skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on July 1, 2026

Title: Identification of Ion-kinetic Instabilities in Hybrid-PIC Simulations of Solar Wind Plasma with Machine Learning
Abstract Analysis of ion-kinetic instabilities in solar wind plasmas is crucial for understanding energetics and dynamics throughout the heliosphere, as evident from spacecraft observations of complex ion velocity distribution functions (VDFs) and ubiquitous ion-scale kinetic waves. In this work, we explore machine learning (ML) and deep learning (DL) classification models to identify unstable cases of ion VDFs driving kinetic waves. Using 34 hybrid particle-in-cell simulations of kinetic protons andα-particles initialized using plasma parameters derived from solar wind (SW) observations, we prepare a data set of nearly 1600 VDFs representing stable/unstable cases and associated plasma and wave properties. We compare feature-based classifiers applied to VDF moments, such as support vector machine and random forest (RF), with DL convolutional neural networks (CNNs) applied directly to VDFs as images in the gyrotropic velocity plane. The best-performing classifier, RF, has an accuracy of 0.96 ± 0.01, and a true skill score of 0.89 ± 0.03, with the majority of missed predictions made near stability thresholds. We study how the variations of the temporal derivative thresholds of anisotropies and magnetic energies, and sampling strategies for simulation runs, affect classification. CNN-based models have the highest accuracy of 0.88 ± 0.18 among all considered if evaluated on the runs entirely not used during the model training. The addition of theEpower spectrum as an input for the ML models leads to the improvement of instability analysis for some cases. The results demonstrate the potential of ML and DL for the detection of ion-scale kinetic instabilities using spacecraft observations of SW and magnetospheric plasmas.  more » « less
Award ID(s):
1936361
PAR ID:
10634338
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
The Astrophysical Journal
Date Published:
Journal Name:
The Astrophysical Journal Supplement Series
Volume:
279
Issue:
1
ISSN:
0067-0049
Page Range / eLocation ID:
28
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Recent observations of the solar wind ions by the SPAN-I instruments on board the Parker Solar Probe (PSP) spacecraft at solar perihelia (Encounters) 4 and closer find ample evidence of complex anisotropic non-Maxwellian velocity distributions that consist of core, beam, and “hammerhead” (i.e., anisotropic beam) populations. The proton core populations are anisotropic, withT/T > 1, and the beams have super-Alfvénic speed relative to the core (we provide an example from Encounter 17). Theα-particle population shows similar features to the protons. These unstable velocity distribution functions (VDFs) are associated with enhanced, right-hand (RH) and left-hand (LH) polarized ion-scale kinetic wave activity, detected by the FIELDS instrument. Motivated by PSP observations, we employ nonlinear hybrid models to investigate the evolution of the anisotropic hot-beam VDFs and model the growth and the nonlinear stage of ion kinetic instabilities in several linearly unstable cases. The models are initialized with ion VDFs motivated by the observational parameters. We find rapidly growing (in terms of proton gyroperiods) combined ion-cyclotron and magnetosonic instabilities, which produce LH and RH ion-scale wave spectra, respectively. The modeled ion VDFs in the nonlinear stage of the evolution are qualitatively in agreement with PSP observations of the anisotropic core and “hammerhead” velocity distributions, quantifying the effect of the ion kinetic instabilities on wind plasma heating close to the Sun. We conclude that the wave–particle interactions play an important role in the energy transfer between the magnetic energy (waves) and random particle motion, leading to anisotropic solar wind plasma heating. 
    more » « less
  2. null (Ed.)
    ABSTRACT Various plasma waves and instabilities are abundantly present in the solar wind plasma, as evidenced by spacecraft observations. Among these, propagating modes and instabilities driven by temperature anisotropies are known to play a significant role in the solar wind dynamics. In situ measurements reveal that the threshold conditions for these instabilities adequately explain the solar wind conditions at large heliocentric distances. This paper pays attention to the combined effects of electron firehose instability driven by excessive parallel electron temperature anisotropy (T⊥e < T∥e) at high beta conditions, and electromagnetic ion cyclotron instability driven by excessive perpendicular proton temperature anisotropy (T⊥i > T∥i). By employing quasilinear kinetic theory based upon the assumption of bi-Maxwellian velocity distribution functions for protons and electrons, the dynamical evolution of the combined instabilities and their mutual interactions mediated by the particles is explored in depth. It is found that while in some cases, the two unstable modes are excited and saturated at distinct spatial and temporal scales, in other cases, the two unstable modes are intermingled such that a straightforward interpretation is not so easy. This shows that when the dynamics of protons and electrons are mutually coupled and when multiple unstable modes are excited in the system, the dynamical consequences can be quite complex. 
    more » « less
  3. Abstract Recent in situ observations from Parker Solar Probe (PSP) near perihelia reveal ion beams, temperature anisotropies, and kinetic wave activity. These features are likely linked to solar wind heating and acceleration. During PSP Encounter 17 (at 11.4Rs) on 2023 September 26, the PSP/FIELDS instrument detected enhanced ion-scale wave activity associated with deviations from local thermodynamic equilibrium in ion velocity distribution functions (VDFs) observed by the PSP/Solar Probe Analyzers-Ion. Dense beams (secondary populations) were present in the proton VDFs during this wave activity. Using bi-Maxwellian fits to the proton VDFs, we found that the density of the proton beam population increased during the wave activity and, unexpectedly, surpassed the core population at certain intervals. Interestingly, the wave power was reduced during the intervals when the beam population density exceeded the core density. The drift velocity of the beams decreases from 0.9 to 0.7 of the Alfvén speed, and the proton core shows a higher temperature anisotropy (T/T > 2.5) during these intervals. We conclude that the observations during these intervals are consistent with a reconnection event during a heliospheric current sheet crossing. During this event,α-particle parameters (density, velocity, and temperature anisotropy) remained nearly constant. Using linear analysis, we examined how the proton beam drives instability or wave dissipation. Furthermore, we investigated the nonlinear evolution of ion kinetic instabilities using hybrid kinetic simulations. This study provides direct clues about energy transfer between particles and waves in the young solar wind. 
    more » « less
  4. Romain Maggiolo, Nicolas André (Ed.)
    As space plasmas are highly collisionless and involve several temporal and spatial scales, understanding the physical mechanisms responsible for energy transport between these scales is a challenge. Ideally, to study cross-scale space plasma processes, simultaneous multi-spacecraft measurements in three different scales (fluid, ion and electron) would be required together with adequate instrumental temporal resolution. In this chapter we discuss cross-scale energy transport mechanisms mainly focusing on velocity shear driven Kelvin-Helmholtz instability and resulting secondary instabilities and processes, e.g, magnetic reconnection, kinetic magnetosonic waves and kinetic Alfven waves/mode conversion. 
    more » « less
  5. ABSTRACT Ion beam-driven instabilities in a collisionless space plasma with low β, i.e. low plasma and magnetic pressure ratio, are investigated using particle-in-cell (PIC) simulations. Specifically, the effects of different ion drift velocities on the development of Buneman and resonant electromagnetic (EM) right-handed (RH) ion beam instabilities are studied. Our simulations reveal that both instabilities can be driven when the ion beam drift exceeds the theoretical thresholds. The Buneman instability, which is weakly triggered initially, dissipates only a small fraction of the kinetic energy of the ion beam while causing significant electron heating, owing to the small electron-ion mass ratio. However, we find that the ion beam-driven Buneman instability is quenched effectively by the resonant EM RH ion beam instability. Instead, the resonant EM RH ion beam instability dominates when the ion drift velocity is larger than the Alfvén speed, leading to the generation of RH Alfvén waves and RH whistler waves. We find that the intensity of Alfvén waves decreases with decrease of ion beam drift velocity, while the intensity of whistler waves increases. Our results provide new insights into the complex interplay between ion beams and plasma instabilities in low β collisionless space plasmas. 
    more » « less