skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 10, 2025

Title: Prompt Tuning Strikes Back: Customizing Foundation Models with Low-Rank Prompt Adaptation
Parameter-Efficient Fine-Tuning (PEFT) has become the standard for customising Foundation Models (FMs) to user-specific downstream tasks. However, typical PEFT methods require storing multiple task-specific adapters, creating scalability issues as these adapters must be housed and run at the FM server. Traditional prompt tuning offers a potential solution by customising them through task-specific input prefixes, but it under-performs compared to other PEFT methods like LoRA. To address this gap, we propose Low-Rank Prompt Adaptation (LoPA), a prompttuning-based approach that performs on par with state-of-the-art PEFT methods and full fine-tuning while being more parameter-efficient and not requiring a server-based adapter. LoPA generates soft prompts by balancing between sharing task-specific information across instances and customization for each instance. It uses a low-rank decomposition of the soft-prompt component encoded for each instance to achieve parameter efficiency. We provide a comprehensive evaluation on multiple natural language understanding and code generation and understanding tasks across a wide range of foundation models with varying sizes.  more » « less
Award ID(s):
2212558
PAR ID:
10607924
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
http://papers.nips.cc/paper_files/paper/2024/hash/548551c07a68c8f0a87d67c6167cedb1-Abstract-Conference.html
Date Published:
ISBN:
9798331314385
Format(s):
Medium: X
Location:
Vancouver, Canada
Sponsoring Org:
National Science Foundation
More Like this
  1. The "pretrain-then-finetune" paradigm is commonly adopted in the deployment of large language models. Low-Rank Adaptation (LoRA), a parameter-efficient fine-tuning method, is often employed to adapt a base model to a multitude of tasks, resulting in a substantial collection of LoRA adapters derived from one base model. We observe that this paradigm presents significant opportunities for batched inference during serving. To capitalize on these opportunities, we present S-LoRA, a system designed for the scalable serving of many LoRA adapters. S-LoRA stores all adapters in the main memory and fetches the adapters used by the currently running queries to the GPU memory. To efficiently use the GPU memory and reduce fragmentation, S-LoRA proposes Unified Paging. Unified Paging uses a unified memory pool to manage dynamic adapter weights with different ranks and KV cache tensors with varying sequence lengths. Additionally, S-LoRA employs a novel tensor parallelism strategy and highly optimized custom CUDA kernels for heterogeneous batching of LoRA computation. Collectively, these features enable S-LoRA to serve thousands of LoRA adapters on a single GPU or across multiple GPUs with a small overhead. Compared to state-of-the-art libraries such as HuggingFace PEFT and vLLM (with naive support of LoRA serving), S-LoRA can improve the throughput by up to 4 times and increase the number of served adapters by several orders of magnitude. As a result, S-LoRA enables scalable serving of many task-specific fine-tuned models and offers the potential for large-scale customized fine-tuning services. The code is available at this https URL 
    more » « less
  2. Low-Rank Adaptation (LoRA) has recently gained attention for fine-tuning foundation models by incorporating trainable low-rank matrices, thereby reducing the number of trainable parameters. While LoRA offers numerous advantages, its applicability for real-time serving to a diverse and global user base is constrained by its incapability to handle multiple task-specific adapters efficiently. This imposes a performance bottleneck in scenarios requiring personalized, task-specific adaptations for each incoming request. To mitigate this constraint, we introduce Fast LoRA (FLoRA), a framework in which each input example in a minibatch can be associated with its unique low-rank adaptation weights, allowing for efficient batching of heterogeneous requests. We empirically demonstrate that FLoRA retains the performance merits of LoRA, showcasing competitive results on the MultiPL-E code generation benchmark spanning over 8 languages and a multilingual speech recognition task across 6 languages. 
    more » « less
  3. Nowadays, parameter-efficient fine-tuning (PEFT) large pre-trained models (LPMs) for downstream task have gained significant popularity, since it could significantly minimize the training computational overhead. The representative work, LoRA [1], learns a low-rank adaptor for a new downstream task, rather than fine-tuning the whole backbone model. However, for inference, the large size of the learned model remains unchanged, leading to in-efficient inference computation. To mitigate this, in this work, we are the first to propose a learning-to-prune methodology specially designed for fine-tuning downstream tasks based on LPMs with low-rank adaptation. Unlike prior low-rank adaptation approaches that only learn the low-rank adaptors for downstream tasks, our method further leverages the Gumbel-Sigmoid tricks to learn a set of trainable binary channel-wise masks that automatically prune the backbone LPMs. Therefore, our method could leverage the benefits of low-rank adaptation to reduce the training parameters size and smaller pruned backbone LPM size for efficient inference computation. Extensive experiments show that the Pruned-RoBbase model with our method achieves an average channel-wise structured pruning ratio of 24.5% across the popular GLUE Benchmark, coupled with an average of 18% inference time speed-up in real NVIDIA A5000 GPU. The Pruned-DistilBERT shows an average of 13% inference time improvement with 17% sparsity. The Pruned-LLaMA-7B model achieves up to 18.2% inference time improvement with 24.5% sparsity, demonstrating the effectiveness of our learnable pruning approach across different models and tasks. 
    more » « less
  4. Signal peptides (SPs) play a crucial role in protein translocation in cells. The development of large protein language models (PLMs) and prompt-based learning provide a new opportunity for SP prediction, especially for the categories with limited annotated data. We present a parameter-efficient fine-tuning (PEFT) framework for SP prediction, PEFT-SP, to effectively utilize pretrained PLMs. We integrated low-rank adaptation (LoRA) into ESM-2 models to better leverage the protein sequence evolutionary knowledge of PLMs. Experiments show that PEFT-SP using LoRA enhances state-of-the-art results, leading to a maximum Matthews correlation coefficient (MCC) gain of 87.3% for SPs with small training samples and an overall MCC gain of 6.1%. Furthermore, we also employed two other PEFT methods, prompt tuning and adapter tuning, in ESM-2 for SP prediction. More elaborate experiments show that PEFT-SP using adapter tuning can also improve the state-of-the-art results by up to 28.1% MCC gain for SPs with small training samples and an overall MCC gain of 3.8%. LoRA requires fewer computing resources and less memory than the adapter tuning during the training stage, making it possible to adapt larger and more powerful protein models for SP prediction. 
    more » « less
  5. The current modus operandi in adapting pre-trained models involves updating all the backbone parameters, ie, full fine-tuning. This paper introduces Visual Prompt Tuning (VPT) as an efficient and effective alternative to full fine-tuning for large-scale Transformer models in vision. Taking inspiration from recent advances in efficiently tuning large language models, VPT introduces only a small amount (less than 1% of model parameters) of trainable parameters in the input space while keeping the model backbone frozen. Via extensive experiments on a wide variety of downstream recognition tasks, we show that VPT achieves significant performance gains compared to other parameter efficient tuning protocols. Most importantly, VPT even outperforms full fine-tuning in many cases across model capacities and training data scales, while reducing per-task storage cost. 
    more » « less