skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Reintroduced bison diet changes throughout the season in restored prairie
Grazing as a management tool is often intended to alter plant community dynamics through preferential foraging. Bison diet in the western United States has been well studied, especially in short and mixed grass remnant prairies. However, there is little known about what bison consume in restored and tallgrass prairies. As bison reintroductions are used more commonly in eastern tallgrass prairies, it is important to understand their diet to predict future impacts on prairie plant communities. This study aims to understand bison diet across different seasons, and asks whether diet differs among male and female, and differently aged bison. We used stable isotope analysis to quantify δ13C and δ15N in plants and used a Bayesian isotope mixing model to estimate bison diet. We found bulls relied more heavily on C4plants and wetland plants than cows, which relied more heavily on forbs, but no differences in diet between ages. Our analysis shows that bison primarily grazed on C4grasses throughout the late spring and summer. However, bison foraged more on wetland species and forbs in the late summer and fall. This change in diet could have implications for wetland species and habitats, through dung inputs and trampling. The relatively high reliance on forbs for nearly one‐third of bison diet could mean intended impacts of reintroduced bison such as increased plant diversity through preferential grazing on grasses could be dampened. Managers reintroducing bison to restored prairie ecosystems should ensure adequate wetland and forb species, in addition to a mix of grasses.  more » « less
Award ID(s):
1647502
PAR ID:
10607925
Author(s) / Creator(s):
; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Restoration Ecology
Volume:
29
Issue:
S1
ISSN:
1061-2971
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Plant‐microbial‐herbivore interactions play a crucial role in the structuring and maintenance of plant communities and biodiversity, yet these relationships are complex. In grassland ecosystems, herbivores have the potential to greatly influence the survival, growth and reproduction of plants. However, few studies examine interactions of above‐ and below‐ground grazing and arbuscular mycorrhizal (AM) mycorrhizal symbiosis on plant community structure.We established experimental mesocosms containing an assemblage of eight tallgrass prairie grass and forb species in native prairie soil, maintained under mycorrhizal and nonmycorrhizal conditions, with and without native herbivorous soil nematodes, and with and without grasshopper herbivory. Using factorial analysis of variance and principal component analysis, we examined: (a) the independent and interacting effects of above‐ and below‐ground herbivores on AM symbiosis in tallgrass prairie mesocosms, (b) independent and interacting effects of above‐ and below‐ground herbivores and mycorrhizal fungi on plant community structure and (c) potential influences of mycorrhizal responsiveness of host plants on herbivory tolerance and concomitant shifts in plant community composition.Treatment effects were characterized by interactions between AM fungi and both above‐ground and below‐ground herbivores, while herbivore effects were additive. The dominance of mycorrhizal‐dependent C4grasses in the presence of AM symbiosis was increased (p < 0.0001) by grasshopper herbivory but reduced (p < 0.0001) by nematode herbivory. Cool‐season C3grasses exhibited a competitive release in the absence of AM symbiosis but this effect was largely reversed in the presence of grasshopper herbivory. Forbs showed species‐specific responses to both AM fungal inoculation and the addition of herbivores. Biomass of the grazing‐avoidant, facultatively mycotrophic forbBrickellia eupatorioidesincreased (p < 0.0001) in the absence of AM symbiosis and with grasshopper herbivory, while AM‐related increases in the above‐ground biomass of mycorrhizal‐dependent forbsRudbeckia hirtaandSalvia azureawere eradicated (p < 0.0001) by grasshopper herbivory. In contrast, nematode herbivory enhanced (p = 0.001) the contribution ofSalvia azureato total biomass.Synthesis. Our research indicates that arbuscular mycorrhizal symbiosis is the key driver of dominance of C4grasses in the tallgrass prairie, with foliar and root herbivory being two mechanisms for maintenance of plant diversity. 
    more » « less
  2. Abstract Knowledge of how habitat restoration shapes soil microbial communities often is limited despite their critical roles in ecosystem function. Soil community diversity and composition change after restoration, but the trajectory of these successional changes may be influenced by disturbances imposed for habitat management. We studied soil bacterial communities in a restored tallgrass prairie chronosequence for >6 years to document how diversity and composition changed with age, management through fire, and grazing by reintroduced bison, and in comparison to pre-restoration agricultural fields and remnant prairies. Soil C:N increased with restoration age and bison, and soil pH first increased and then declined with age, although bison weakened this pattern. Bacterial richness and diversity followed a similar hump-shaped pattern as soil pH, such that the oldest restorations approached the low diversity of remnant prairies. β-diversity patterns indicated that composition in older restorations with bison resembled bison-free sites, but over time they became more distinct. In contrast, younger restorations with bison maintained unique compositions throughout the study, suggesting bison disturbances may cause a different successional trajectory. We used a novel random forest approach to identify taxa that indicate these differences, finding that they were frequently associated with bacteria that respond to grazing in other grasslands. 
    more » « less
  3. Abstract Bison have long been considered a keystone species of North American prairies, increasing plant and animal diversity through a number of unique behaviors. One such behavior is wallowing, in which the repeated rolling of bison in the same spot leads to the formation of small, shallow, oval depressions called wallows. The objective of this study was to characterize spatial and physical attributes of bison wallows at the Konza Prairie Biological Station, a tallgrass prairie preserve in northeastern Kansas. We used aerial imagery from two different years (2011 and 2019) to assess the abundance and spatial distribution of these wallows in relation to fire frequency, elevation, and slope. We also recorded physical characteristics (2020) for a randomly selected subset of wallows and analyzed these data in relation to the same landscape features. Results from the analysis of the aerial images indicated that wallows were more abundant in areas characterized by combinations of more frequent burning, higher elevations, and little or no slope. In the 2020 physical measurements, we found that wallows were smaller in areas burned more often and shallower at higher elevations, particularly when located on grazing lawns. Terrestrial plants were found in approximately 72.1% of the wallows that were physically sampled, and their prevalence increased with increasing slope. We found some quantity of aquatic plants in approximately 7.1% of the sampled wallows. The probability of finding aquatic vegetation in wallows was higher on grazing lawns and in areas burned less frequently, particularly every 20 years. This study enhances the understanding of the distribution of wallows and their physical characteristics as a type of disturbance that could alter relationships within grassland communities. 
    more » « less
  4. Abstract In the Central Great Plains of North America, fire suppression is causing transitions from grasslands to shrublands and woodlands. This woody encroachment alters plant community composition, decreases grassland biodiversity, undermines key ecosystem services, and is difficult to reverse. How native grazers affect woody encroachment is largely unknown, especially compared to domesticated grazers. Bison were once the most widespread megafauna in North America and are typically categorized as grazers, with negative effects on grasses that indirectly benefit woody plants. However, bison can negatively impact woody plants through occasional browsing and mechanical disturbance. This study reports on a 30‐year experiment at Konza Prairie Biological Station, a mesic grassland in the Central Great Plains of North America, under fire suppression and experimental presence/absence of bison. Based on remote sensing, deciduous tree canopy cover was lower with bison (6% grazed vs. 16% ungrazed). Shrub land cover showed no difference (42% grazed vs. 41% ungrazed), while herbaceous land cover was higher with bison (51% grazed vs. 40% ungrazed). Evergreen tree canopy cover (Juniperus virginianaL.), which decreases biodiversity and increases wildfire risk, was approximately 0% with bison compared to 4% without bison. In the survival trial ofJ. virginianaseedlings, we found a 40% overwinter mortality with bison, compared to 5% mortality without bison. Compared to ungrazed areas, native plant species richness was 97% and 38% higher in bison‐grazed uplands and lowlands, respectively. Species evenness and Shannon's index were higher in the bison treatment in uplands, but not in lowlands. Bison affected community composition, resulting in higher cover of short grass species and lower tree cover. While grazers are generally assumed to favor woody plants, we found that bison had the opposite effect at low fire frequencies. We argue that the large size of bison and their behaviors account for this pattern, including trampling, horning, and occasional browsing. From a conservation perspective, bison might hamper tree expansion and increase plant diversity in tallgrass prairies and similar grasslands. 
    more » « less
  5. Disturbances are drivers of ecosystem function and play important roles in shaping ecological communities. Pre- scribed fire and grazing disturbances are common management tools in restored and remnant grasslands. The effects of these management actions on plant communities and on vegetation-dwelling invertebrates are generally well studied. However, less is known about their effects on ground-dwelling invertebrates, which can contribute to important ecosystem processes like herbivory, predation, and decomposition. We examined bison grazing and prescribed fire effects on abundance, diversity, and community composition of ground-dwelling invertebrate groups in restored tallgrass prairies using pitfall trap samples. Surprisingly, invertebrate Shannon diversity decreased when bison were present and was unaffected by fire or the fire–bison interaction. Bison, and to a lesser extent fire, also shifted community composition, increasing abundance of ground, rove, and dung beetles, as well as orthopterans and spiders. Prescribed fire generally increased beetles but caused declines in sev- eral ecologically diverse invertebrate groups, including harvestmen and true bugs, although these reduced abundances did not lead to differences in overall diversity. Bison presence may amplify the abundances of dominant groups, such as ground and dung beetles and orthopterans, that outcompete other invertebrates and reduce diversity. Implications for insect conservation Prescribed fire and grazing by bison change ground-dwelling invertebrate community composition, but bison presence did not reduce the abundance of most taxonomic groups. Fire may have short-term negative impacts on some invertebrate groups that promote desirable invertebrate-driven ecosystem processes, but these effects are likely short-lived, and the resulting environmental mosaic under bison and fire management could support biodiversity over the long-term. 
    more » « less