skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on February 19, 2026

Title: A Remediation Framework Against False Data Injection Cyberattacks Targeting ULTC Transformers to Avoid Voltage Collapse in Smart Distribution Networks
False data injection (FDI) attacks targeting under-load tap changing (ULTC) transformers pose a significant threat to smart distribution networks by exploiting vulnerabilities in the volt-var optimization (VVO) process, leading to potential undervoltage and voltage collapse. The increased integration of renewable energy and cyber-physical systems has expanded the attack surface, making traditional detection methods inadequate. For example, in 2023, attacks on utilities and decentralized components in the United States rose by 200%, with overall cyber threats increasing by 104%, highlighting growing vulnerabilities in distribution systems. To this end, this article proposes a two-stage remediation framework for decentralized FDI (DFDI) attacks targeting ULTC transformers. In the attack stage, vulnerabilities in ULTCs and voltage regulators are scrutinized, risking voltage collapse or blackouts in the distribution system. In the remediation stage, the distribution system operator focuses on non-attacked ULTCs, voltage regulators, distributed generation (DG) units, and smart homes to minimize reliance on compromised components. In this regard, a distinctive formulation of distribution network resilience and load management (DNRLM) problem is introduced to identify a resilient network topology and determine a situational power balance strategy. The proposed framework focuses on minimizing the system's reliance on the attacked ULTCs and voltage regulator components, thereby avoiding the intended voltage collapse caused by such DFDIs. The simulation results verify that the proposed method reduces the voltage collapse proximity index by over 60%, enhancing system resilience under DFDI attacks.  more » « less
Award ID(s):
2348420
PAR ID:
10607941
Author(s) / Creator(s):
;
Publisher / Repository:
IEEE Transactions on Industry Applications
Date Published:
Journal Name:
IEEE Transactions on Industry Applications
Volume:
61
Issue:
3
ISSN:
0093-9994
Page Range / eLocation ID:
5148 to 5160
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This work introduces a novel physics-informed neural network (PINN)-based framework for modeling and optimizing false data injection (FDI) attacks on electric vehicle charging station (EVCS) networks, with a focus on centralized charging management system (CMS). By embedding the governing physical laws as constraints within the neural network’s loss function, the proposed framework enables scalable, real-time analysis of cyber-physical vulnerabilities. The PINN models EVCS dynamics under both normal and adversarial conditions while optimizing stealthy attack vectors that exploit voltage and current regulation. Evaluations on the IEEE 33-bus system demonstrate the framework’s capability to uncover critical vulnerabilities. These findings underscore the urgent need for enhanced resilience strategies in EVCS networks to mitigate emerging cyber threats targeting the power grid. Furthermore, the framework lays the groundwork for exploring a broader range of cyber-physical attack scenarios on EVCS networks, offering potential insights into their impact on power grid operations. It provides a flexible platform for studying the interplay between physical constraints and adversarial manipulations, enhancing our understanding of EVCS vulnerabilities. This approach opens avenues for future research into robust mitigation strategies and resilient design principles tailored to the evolving cybersecurity challenges in smart grid systems. 
    more » « less
  2. This paper proposes an on-line remedial action scheme (OLRAS) in order to mitigate the voltage violations caused by false data injection attacks (FDIAs) targeting under load tap changing (ULTC) transformers in smart distribution systems. The FDIA framework contains two different phases. In the attack phase, distribution system operator (DSO), being in attacker's shoe, considers cyberattack scenarios through compromising the results of volt-var optimization problem in a radial distribution grid modified with distributed energy resources (DERs) such as photovoltaic (PV) units and wind turbines (WTs). The outcome of the attack phase will be the compromised voltage profile of the distribution grid showing different rates of voltage violations. In the reaction phase, the DSO rapidly identifies a customized distribution feeder reconfiguration (CDFR) in order to update the flows of active and reactive power throughout the targeted distribution system and recover the voltage profile. The objective functions of the proposed CDFR are defined to minimize the impacts of such cyberattacks targeting ULTCs within distribution grids. This will empower DSOs to react to severe cyberattacks, bypassing the detection stage, and address the voltage violations in a timely manner. The effectiveness of the proposed OLRAS is validated on an IEEE test system. 
    more » « less
  3. In the process of protecting power systems against different types of cyberattacks, the primary step is to precisely model such frameworks from attacker's perspective. This paper investigates a false data injection (FDI) attack framework, which can target under-load tap changing (ULTC) transformers, resulting in manipulated voltage profile in radial smart distribution networks. The developed FDI model compromises the voltage profile of a distribution feeder through misleading the volt/var optimization, that optimally manages system-wide voltage profile and flow of reactive power. The presented attack model is formulated as a bi-objective optimization problem. The objective functions from the attacker's point of view are 1) minimizing the level of false data to be injected into the smart meters associated with load data and 2) maximizing the voltage deviation of the distribution grid. Negative impacts of such a cyberattack model have been validated and discussed in this work on an IEEE distribution test system, necessitating proper remedial actions, which will be elaborated in the next step of this research. 
    more » « less
  4. Abstract The rise in smart water technologies has introduced new cybersecurity vulnerabilities for water infrastructures. However, the implications of cyber‐physical attacks on the systems like urban drainage systems remain underexplored. This research delves into this gap, introducing a method to quantify flood risks in the face of cyber‐physical threats. We apply this approach to a smart stormwater system—a real‐time controlled network of pond‐conduit configurations, fitted with water level detectors and gate regulators. Our focus is on a specific cyber‐physical threat: false data injection (FDI). In FDI attacks, adversaries introduce deceptive data that mimics legitimate system noises, evading detection. Our risk assessment incorporates factors like sensor noises and weather prediction uncertainties. Findings reveal that FDIs can amplify flood risks by feeding the control system false data, leading to erroneous outflow directives. Notably, FDI attacks can reshape flood risk dynamics across different storm intensities, accentuating flood risks during less severe but more frequent storms. This study offers valuable insights for strategizing investments in smart stormwater systems, keeping cyber‐physical threats in perspective. Furthermore, our risk quantification method can be extended to other water system networks, such as irrigation channels and multi‐reservoir systems, aiding in cyber‐defense planning. 
    more » « less
  5. This paper proposes a framework to optimally employ static VAR compensators (SVCs) within a customized reconfiguration of system topology, leading to remediation of voltage violations caused by false data injection (FDI) cyberattacks targeting smart distribution grids. The designed framework contains formulations associated with planning and operation phases. In the planning phase, the scrutinized system, modified by photovoltaic (PV) units, is enhanced by optimally allocating static VAR compensators (SVCs) to keep the unity power factor throughout the system. Then, distribution system operator (DSO), being in attacker’s shoe, examines relevant cyberattack scenarios leading to voltage violations within the distribution system. Finally, in the operation phase, DSO takes advantage of the optimally planned SVCs to identify proper vectors (i.e., remedial actions) to cope with such potential scenarios of cyberattacks. These (to be recognized) vectors are associated with the variable shunt susceptance of the mentioned SVCs, which will be identified by solving a customized distribution feeder reconfiguration (DFR) problem in the operation phase. The main objective of the customized DFR is to maximize the contributions of SVCs through enhancing the voltage profile of the targeted system. This will enable DSO to mitigate the negative impacts of the FDI attacks and recover the voltage profile of the smart distribution network. The effectiveness of the proposed RAS is validated on three different smart test systems (i.e., 33-bus, 95-bus, and 136-bus systems), which are modified to contain SVC components and renewable-based distributed generation (DG) units. 
    more » « less