The response of the hydrological cycle to anthropogenic climate change, especially across the tropical oceans, remains poorly understood due to the scarcity of long instrumental temperature and hydrological records. Massive shallow-water corals are ideally suited to reconstructing past oceanic variability as they are widely distributed across the tropics, rapidly deposit calcium carbonate skeletons that continuously record ambient environmental conditions, and can be sampled at monthly to annual resolution. Most coral-based reconstructions utilize stable oxygen isotope composition (δ18O) that tracks the combined change in sea surface temperature (SST) and the oxygen isotopic composition of seawater (δ18Osw), a measure of hydrologic variability. Increasingly, coral δ18O time series are paired with time series of strontium-to-calcium ratios (Sr / Ca), a proxy for SST, from the same coral to quantify temperature and δ18Osw variability through time. To increase the utility of such reconstructions, we present the CoralHydro2k database: a compilation of published, peer-reviewed coral Sr / Ca and δ18O records from the Common Era. The database contains 54 paired Sr / Ca-δ18O records and 125 unpaired Sr / Ca or δ18O records, with 88 % of these records providing data coverage from 1800 CE to present. A quality-controlled set of metadata with standardized vocabulary and units accompanies each record, informing the use of the database. The CoralHydro2k database tracks large-scale temperature and hydrological variability. As such, it is well-suited for investigations of past climate variability, comparisons with climate model simulations including isotope-enabled models – and application in paleo-data assimilation projects.The CoralHydro2k database will be available on the NOAA National Center for Environmental Information’s Paleoclimate data service with serializations in MATLAB, R, Python, and LiPD.
more »
« less
This content will become publicly available on May 14, 2026
PaleoSTeHM v1.0: a modern, scalable spatiotemporal hierarchical modeling framework for paleo-environmental data
Geological records of past environmental change provide crucial insights into long-term climate variability, trends, non-stationarity, and nonlinear feedback mechanisms. However, reconstructing spatiotemporal fields from these records is statistically challenging due to their sparse, indirect, and noisy nature. Here, we present PaleoSTeHM, a scalable and modern framework for spatiotemporal hierarchical modeling of paleo-environmental data. This framework enables the implementation of flexible statistical models that rigorously quantify spatial and temporal variability from geological data while clearly distinguishing measurement and inferential uncertainty from process variability. We illustrate its application by reconstructing temporal and spatiotemporal paleo-sea-level changes across multiple locations. Using various modeling and analysis choices, PaleoSTeHM demonstrates the impact of different methods on inference results and computational efficiency. Our results highlight the critical role of model selection in addressing specific paleo-environmental questions, showcasing the PaleoSTeHM framework's potential to enhance the robustness and transparency of paleo-environmental reconstructions.
more »
« less
- Award ID(s):
- 2148265
- PAR ID:
- 10608019
- Publisher / Repository:
- Copernicus
- Date Published:
- Journal Name:
- Geoscientific Model Development
- Volume:
- 18
- Issue:
- 9
- ISSN:
- 1991-9603
- Page Range / eLocation ID:
- 2609 to 2637
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract. The response of the hydrological cycle to anthropogenic climatechange, especially across the tropical oceans, remains poorly understood due to the scarcity of long instrumental temperature and hydrological records. Massive shallow-water corals are ideally suited to reconstructing past oceanic variability as they are widely distributed across the tropics,rapidly deposit calcium carbonate skeletons that continuously record ambient environmental conditions, and can be sampled at monthly to annualresolution. Climate reconstructions based on corals primarily use the stable oxygen isotope composition (δ18O), which acts as a proxy for sea surface temperature (SST), and the oxygen isotope composition ofseawater (δ18Osw), a measure of hydrological variability. Increasingly, coral δ18O time series are paired with time series of strontium-to-calcium ratios (Sr/Ca), a proxy for SST, from the same coral to quantify temperature and δ18Osw variabilitythrough time. To increase the utility of such reconstructions, we presentthe CoralHydro2k database, a compilation of published, peer-reviewed coral Sr/Ca and δ18O records from the Common Era (CE). The database contains 54 paired Sr/Ca–δ18O records and 125 unpaired Sr/Ca or δ18O records, with 88 % of these records providing data coverage from 1800 CE to the present. A quality-controlled set of metadata with standardized vocabulary and units accompanies each record, informing the useof the database. The CoralHydro2k database tracks large-scale temperatureand hydrological variability. As such, it is well-suited for investigationsof past climate variability, comparisons with climate model simulationsincluding isotope-enabled models, and application in paleodata-assimilation projects. The CoralHydro2k database is available in Linked Paleo Data (LiPD) format with serializations in MATLAB, R, and Python and can be downloaded from the NOAA National Center for Environmental Information's Paleoclimate Data Archive at https://doi.org/10.25921/yp94-v135 (Walter et al., 2022).more » « less
-
null (Ed.)Abstract. Reconstructions of global hydroclimate during the Common Era (CE; the past ∼2000 years) are important for providing context for current and future global environmental change. Stable isotope ratios in water are quantitative indicators of hydroclimate on regional to global scales, and these signals are encoded in a wide range of natural geologic archives. Here we present the Iso2k database, a global compilation of previously published datasets from a variety of natural archives that record the stable oxygen (δ18O) or hydrogen (δ2H) isotopic compositions of environmental waters, which reflect hydroclimate changes over the CE. The Iso2k database contains 759 isotope records from the terrestrial and marine realms, including glacier and ground ice (210); speleothems (68); corals, sclerosponges, and mollusks (143); wood (81); lake sediments and other terrestrial sediments (e.g., loess) (158); and marine sediments (99). Individual datasets have temporal resolutions ranging from sub-annual to centennial and include chronological data where available. A fundamental feature of the database is its comprehensive metadata, which will assist both experts and nonexperts in the interpretation of each record and in data synthesis. Key metadata fields have standardized vocabularies to facilitate comparisons across diversearchives and with climate-model-simulated fields. This is the firstglobal-scale collection of water isotope proxy records from multiple typesof geological and biological archives. It is suitable for evaluatinghydroclimate processes through time and space using large-scale synthesis,model–data intercomparison and (paleo)data assimilation. The Iso2k databaseis available for download at https://doi.org/10.25921/57j8-vs18 (Konecky and McKay, 2020) and is also accessible via the NOAA/WDS Paleo Datalanding page: https://www.ncdc.noaa.gov/paleo/study/29593 (last access: 30 July 2020).more » « less
-
Variability of oxygen isotopes in environmental water is recorded in tooth enamel, providing a record of seasonal change, dietary variability, and mobility. Physiology dampens this variability, however, as oxygen passes from environmental sources into blood and forming teeth. We showcase two methods of high resolution, 2-dimensional enamel sampling, and conduct modeling, to report why and how environmental oxygen isotope variability is reduced in animal bodies and teeth. First, using two modern experimental sheep, we introduce a sampling method, die-saw dicing, that provides high-resolution physical samples (n = 109 and 111 sample locations per tooth) for use in conventional stable isotope and molecular measurement protocols. Second, we use an ion microprobe to sample innermost enamel in an experimental sheep (n = 156 measurements), and in a Pleistocene orangutan (n = 176 measurements). Synchrotron and conventional μCT scans reveal innermost enamel thicknesses averaging 18 and 21 μm in width. Experimental data in sheep show that compared to drinking water, oxygen isotope variability in blood is reduced to 70–90 %; inner and innermost enamel retain between 36 and 48 % of likely drinking water stable isotope range, but this recovery declines to 28–34 % in outer enamel. 2D isotope sampling suggests that declines in isotopic variability, and shifted isotopic oscillations throughout enamel, result from the angle of secretory hydroxyapatite deposition and its overprinting by maturation. This overprinting occurs at all locations including innermost enamel, and is greatest in outer enamel. These findings confirm that all regions of enamel undergo maturation to varying degrees and confirm that inner and innermost enamel preserve more environmental variability than other regions. We further show how the resolution of isotope sampling — not only the spatial resolution within teeth, but also the temporal resolution of water in the environment — impacts our estimate of how much variation teeth recover from the environment. We suggest inverse methods, or multiplication by standard factors determined by ecology, taxon, and sampling strategy, to reconstruct the full scale of seasonal environmental variability. We advocate for combined inverse modeling and high-resolution sampling informed by the spatiotemporal pattern of enamel formation, and at the inner or innermost enamel when possible, to recover seasonal records from teeth.more » « less
-
Abstract Continued global warming is expected to result in reduced precipitation and a drier climate in Central America. Projections of future changes are highly uncertain, however, due to the spatial resolution limitations of models and insufficient observational data coverage across space and time. Paleoclimate proxy data are therefore critical for understanding regional climate responses during times of global climate reorganization. Here we present two lake‐sediment based records of precipitation variability in Guatemala along with a synthesis of Central American hydroclimate records spanning the last millennium (800–2000 CE). The synthesis reveals that regional climate changes have been strikingly heterogeneous, even over relatively short distances. Our analysis further suggests that shifts in the mean position of the Intertropical Convergence Zone, which have been invoked by numerous studies to explain variability in Central American and circum‐Caribbean proxy records, cannot alone explain the observed pattern of hydroclimate variability. Instead, interactions between several ocean‐atmosphere processes and their disparate influences across variable topography appear to have resulted in complex precipitation responses. These complexities highlight the difficulty of reconstructing past precipitation changes across Central America and point to the need for additional paleo‐record development and analysis before the relationships between external forcing and hydroclimate change can be robustly determined. Such efforts should help anchor model‐based predictions of future responses to continued global warming.more » « less
An official website of the United States government
