Abstract. The effects of anthropogenic warming on the hydroclimate of California are becoming more pronounced with the increased frequency of multi-year droughts and flooding. As a past analog for the future, the Paleocene–Eocene Thermal Maximum (PETM) is a unique natural experiment for assessing global and regional hydroclimate sensitivity to greenhouse gas warming. Globally, extensive evidence (i.e., observations and climate models with high pCO2) demonstrates hydrological intensification with significant variability from region to region (i.e., drier or wetter, greater frequency, and/or intensity of extreme events). Central California (paleolatitude ∼ 42° N), roughly at the boundary between dry subtropical highs and mid-latitude low-pressure systems, would have been particularly susceptible to shifts in atmospheric circulation and precipitation patterns/intensity. Here, we present new observations and climate model output on regional/local hydroclimate responses in central California during the PETM. Our findings, based on multi-proxy evidence within the context of model outputs, suggest a transition to an overall drier climate punctuated by increased precipitation during summer months along central coastal California during the PETM. 
                        more » 
                        « less   
                    
                            
                            Incoherency in Central American Hydroclimate Proxy Records Spanning the Last Millennium
                        
                    
    
            Abstract Continued global warming is expected to result in reduced precipitation and a drier climate in Central America. Projections of future changes are highly uncertain, however, due to the spatial resolution limitations of models and insufficient observational data coverage across space and time. Paleoclimate proxy data are therefore critical for understanding regional climate responses during times of global climate reorganization. Here we present two lake‐sediment based records of precipitation variability in Guatemala along with a synthesis of Central American hydroclimate records spanning the last millennium (800–2000 CE). The synthesis reveals that regional climate changes have been strikingly heterogeneous, even over relatively short distances. Our analysis further suggests that shifts in the mean position of the Intertropical Convergence Zone, which have been invoked by numerous studies to explain variability in Central American and circum‐Caribbean proxy records, cannot alone explain the observed pattern of hydroclimate variability. Instead, interactions between several ocean‐atmosphere processes and their disparate influences across variable topography appear to have resulted in complex precipitation responses. These complexities highlight the difficulty of reconstructing past precipitation changes across Central America and point to the need for additional paleo‐record development and analysis before the relationships between external forcing and hydroclimate change can be robustly determined. Such efforts should help anchor model‐based predictions of future responses to continued global warming. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2029102
- PAR ID:
- 10402543
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Paleoceanography and Paleoclimatology
- Volume:
- 38
- Issue:
- 3
- ISSN:
- 2572-4517
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract. The effects of anthropogenic warming on the hydroclimate of California are becoming more pronounced, with increased frequency of multi-year droughts and flooding. As a past analog for the future, the Paleocene-Eocene Thermal Maximum (PETM) is a unique natural experiment for assessing global and regional hydroclimate sensitivity to greenhouse gas warming. Globally, extensive evidence (i.e., observations, climate models with high pCO2) demonstrates hydrological intensification with significant variability from region to region (i.e., dryer or wetter, or greater frequency and/or intensity of extreme events). Central California (paleolatitude ~42° N), roughly at the boundary between dry subtropical highs and mid-latitude low pressure systems, would have been particularly susceptible to shifts in atmospheric circulation and precipitation patterns/intensity. Here, we present new observations and climate model output on regional/local hydroclimate responses in central California during PETM. Our findings based on multi-proxy evidence within the context of model output suggest a transition to an overall drier climate punctuated by increased precipitation during summer months along the central coastal California during the PETM.more » « less
- 
            Abstract. The South American Summer Monsoon (SASM) is the maindriver of regional hydroclimate variability across tropical and subtropicalSouth America. It is best recorded on paleoclimatic timescales by stableoxygen isotope proxies, which are more spatially representative of regionalhydroclimate than proxies for local precipitation alone. Network studies ofproxies that can isolate regional influences lend particular insight intovarious environmental characteristics that modulate hydroclimate, such asatmospheric circulation variability and changes in the regional energybudget as well as understanding the climate system sensitivity to externalforcings. We extract the coherent modes of variability of the SASM over thelast millennium (LM) using a Monte Carlo empirical orthogonal function(MCEOF) decomposition of 14 δ18O proxy records and compare themwith modes decomposed from isotope-enabled climate model data. The twoleading modes reflect the isotopic variability associated with (1) thermodynamic changes driving the upper-tropospheric monsoon circulation(Bolivian High–Nordeste Low waveguide) and (2) the latitudinaldisplacement of the South Atlantic Convergence Zone (SACZ). The spatialcharacteristics of these modes appear to be robust features of the LMhydroclimate over South America and are reproduced both in the proxy dataand in isotope-enabled climate models, regardless of the nature of themodel-imposed external forcing. The proxy data document that the SASM wascharacterized by considerable temporal variability throughout the LM, withsignificant departures from the mean state during both the Medieval ClimateAnomaly (MCA) and the Little Ice Age (LIA). Model analyses during theseperiods suggest that the local isotopic composition of precipitation isprimarily a reflection of upstream rainout processes associated with monsoonconvection. Model and proxy data both point to an intensification of themonsoon during the LIA over the central and western parts of tropical SouthAmerica and indicate a displacement of the South Atlantic Convergence Zone(SACZ) to the southwest. These centennial-scale changes in monsoon intensityover the LM are underestimated in climate models, complicating theattribution of changes on these timescales to specific forcings and pointingtoward areas of important model development.more » « less
- 
            Abstract Oxygen isotope speleothems have been widely used to infer past climate changes over tropical South America (TSA). However, the spatial patterns of the millennial precipitation and precipitationδ18O (δ18Op) response have remained controversial, and their response mechanisms are unclear. In particular, it is not clear whether the regional precipitation represents the intensity of the millennial South American summer monsoon (SASM). Here, we study the TSA hydroclimate variability during the last deglaciation (20–11 ka ago) by combining transient simulations of an isotope-enabled Community Earth System Model (iCESM) and the speleothem records over the lowland TSA. Our model reasonably simulates the deglacial evolution of hydroclimate variables and water isotopes over the TSA, albeit underestimating the amplitude of variability. North Atlantic meltwater discharge is the leading factor driving the TSA’s millennial hydroclimate variability. The spatial pattern of both precipitation andδ18Opshow a northwest–southeast dipole associated with the meridional migration of the intertropical convergence zone, instead of a continental-wide coherent change as inferred in many previous works on speleothem records. The dipole response is supported by multisource paleoclimate proxies. In response to increased meltwater forcing, the SASM weakened (characterized by a decreased low-level easterly wind) and consequently reduced rainfall in the western Amazon and increased rainfall in eastern Brazil. A similar dipole response is also generated by insolation, ice sheets, and greenhouse gases, suggesting an inherent stability of the spatial characteristics of the SASM regardless of the external forcing and time scales. Finally, we discuss the potential reasons for the model–proxy discrepancy and pose the necessity to build more paleoclimate proxy data in central-western Amazon. Significance StatementWe want to reconcile the controversy on whether there is a coherent or heterogeneous response in millennial hydroclimate over tropical South America and to clearly understand the forcing mechanisms behind it. Our isotope-enabled transient simulations fill the gap in speleothem reconstructions to capture a complete picture of millennial precipitation/δ18Opand monsoon intensity change. We highlight a heterogeneous dipole response in precipitation andδ18Opon millennial and orbital time scales. Increased meltwater discharge shifts ITCZ southward and favors a wet condition in coastal Brazil. Meanwhile, the low-level easterly and the summer monsoon intensity reduced, causing a dry condition in the central-western Amazon. However, the millennial variability of hydroclimate response is underestimated in our model, together with the lack of direct paleoclimate proxies in the central-west Amazon, complicating the interpretation of changes in specific paleoclimate events and posing a challenge to constraining the spatial range of the dipole. Therefore, we emphasize the necessity to increase the source of proxies, enhance proxy interpretations, and improve climate model performance in the future.more » « less
- 
            Abstract We examine the evidence for large‐scale tropical hydroclimate changes over the Common Era based on a compilation of 67 tropical hydroclimate records from 55 sites and assess the consistency between the reconstructed hydroclimate changes and those simulated by transient model simulations of the last millennium. Our synthesis of the proxy records reveals several regionally coherent patterns on centennial time scales. From 800 to 1000 CE, records from the eastern Pacific and parts of Mesoamerica indicate a pronounced drying event relative to background conditions of the Common Era. In addition, 1400–1700 CE is marked by pronounced hydroclimate changes across the tropics, including dry and/or isotopically enriched conditions in South and East Asia, wet and/or isotopically depleted conditions in the central Andes and southern Amazon in South America, and fresher and/or isotopically depleted conditions in the Maritime Continent. We find notable dissimilarities between the regional hydroclimate changes and global‐scale and hemispheric‐scale temperature reconstructions, indicating that more work needs to be done to understand the mechanisms of the widespread tropical hydroclimate changes during the LIA. Apropos to previous interpretations of large‐scale reorganization of tropical Pacific climate during the LIA, we do not find support for a large‐scale southward shift of the Pacific Intertropical Convergence Zone, while evidence for a strengthened Pacific Walker Circulation and/or an equatorward contraction of the monsoonal Asian‐Australian rain belt exists from limited geographic regions but require additional paleoclimate constraints. Transient climate model simulations exhibit weak forced long‐term tropical rainfall changes over the last millennium but provide several important insights to the proxy reconstructions.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
