skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on July 1, 2026

Title: Balancing the Mechanical Performance and Environmental Sustainability of Fiber-Reinforced Concrete
Fiber-reinforced concrete (FRC) can have improved durability and tensile properties, potentially enabling the more efficient use of concrete and lowering greenhouse gas (GHG) emissions. Yet, systematic quantifications of the environmental impacts of FRC, particularly when paired with changes to mechanical properties and the implications for material longevity, are limited. Herein, an assessment following the life-cycle assessment methodology for four common FRCs was performed, namely, those reinforced with polyvinyl alcohol (PVA), steel (ST), polypropylene (PP), and polyethylene terephthalate (PET). The analysis was bound to a cradle-to-gate scope, and solely virgin fiber material production was considered for the environmental impacts. Coupled changes in compressive and tensile strength, environmental impacts, and the role of material longevity and cost relative to unreinforced concrete were examined. Findings from this work show that, similar to unreinforced concrete, cement remains a key source of GHG emissions in FRC production. However, in FRCs fibers can drive additional emissions by up to 55%. Notably, PVA and ST led to the highest impacts and costs, which were minimal for inclusions of PP and PET. Yet ST contributed to the greatest benefits in flexural and compressive strengths. When the effects of longevity were integrated, FRC with PP reinforcement could offer desired emissions reductions with minimal increase in use period and cost, but the other fiber reinforcements considered may need to offer longer service life extension to reduce emissions compared with conventional concrete. These results indicate that FRC can enhance mechanical performance, but fiber type selections should be informed by the design life to achieve actual GHG emissions reductions.  more » « less
Award ID(s):
2143981
PAR ID:
10608144
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
American Society of Civil Engineers
Date Published:
Journal Name:
Journal of Materials in Civil Engineering
Volume:
37
Issue:
7
ISSN:
0899-1561
Page Range / eLocation ID:
04025178
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The study compared the life cycle environmental impacts of three coastal flood management strategies: grey infrastructure (levee), green–grey infrastructure (levee and oyster reef), and a do-nothing scenario, considering the flood damage of a single flooding event in the absence of protection infrastructure. A case study was adopted from a New Orleans, Louisiana residential area to facilitate the comparison. Hazus software, design guidelines, reports, existing projects, and literature were utilized as foreground data for modelling materials. A process-based life cycle assessment was used to assess environmental impacts. The life cycle environmental impacts included global warming, ozone depletion, acidification, eutrophication, smog formation, resource depletion, ecotoxicity, and various human health effects. The ecoinvent database was used for the selected life cycle unit processes. The mean results show green–grey infrastructure as the most promising strategy across most impact categories, reducing 47% of the greenhouse gas (GHG) emissions compared to the do-nothing strategy. Compared to grey infrastructure, green–grey infrastructure mitigates 13%–15% of the environmental impacts while providing equivalent flood protection. A flooding event with a 100-year recurrence interval in the study area is estimated at 34 million kg of CO2equivalent per kilometre of shoreline, while grey and green–grey infrastructure mitigating such flooding is estimated to be 21 and 18 million kg, respectively. This study reinforced that coastal flooding environmental impacts are primarily caused by rebuilding damaged houses, especially concrete and structural timber replacement, accounting for 90% of GHG emissions, with only 10% associated with flood debris waste treatment. The asphalt cover of the levee was identified as the primary contributor to environmental impacts in grey infrastructure, accounting for over 75% of GHG emissions during construction. We found that there is an important interplay between grey and green infrastructure and optimizing their designs can offer solutions to sustainable coastal flood protection. 
    more » « less
  2. There are ongoing research efforts directed at addressing strength limitations of compressed earth blocks (CEB) that inhibit their deployment for structural applications, particularly in areas where masonry systems are regularly subjected to lateral loads from high winds. In this paper, the authors focus specifically on the extent to which polypropylene (PP) fibers can be used to enhance the flexural performance of CEB. Cementitious matrices used for CEB production exhibit low tensile and flexural strength (brittle) properties. This work investigates plain (unreinforced) and fiber-reinforced specimens (short flexural beams) with fiber mass content of 0.2, 0.4, 0.6, 0.8, and 1.0% and ordinary Portland cement (OPC) content of 8%. The influence of the inclusion of fiber was based on tests conducted using the Standard Test Method for Flexural Performance of Fiber-Reinforced Concrete (ASTM C1609). Material properties that were quantified included first-peak strength, peak strength, equivalent flexural strength, residual strength, and flexural toughness. There was an observed improvement in the performance of the soil-fiber matrixes based on these results of these tests. It was also observed that when the fiber content exceeded 0.6% and above, specimens exhibited a deflection- hardening behavior; an indication of improvement in ductility. An equivalent flexural strength predictive model is proposed. 
    more » « less
  3. Abstract Biodegradable plastics, perceived as ‘environmentally friendly’ materials, may end up in natural environments. This impact is often overlooked in the literature due to a lack of assessment methods. This study develops an integrated life cycle impact assessment methodology to assess the climate-change and aquatic-ecotoxicity impacts of biodegradable microplastics in freshwater ecosystems. Our results reveal that highly biodegradable microplastics have lower aquatic ecotoxicity but higher greenhouse gas (GHG) emissions. The extent of burden shifting depends on microplastic size and density. Plastic biodegradation in natural environments can result in higher GHG emissions than biodegradation in engineered end of life (for example, anaerobic digestion), contributing substantially to the life cycle GHG emissions of biodegradable plastics (excluding the use phase). A sensitivity analysis identified critical biodegradation rates for different plastic sizes that result in maximum GHG emissions. This work advances understanding of the environmental impacts of biodegradable plastics, providing an approach for the assessment and design of future plastics. 
    more » « less
  4. Recycling glass fiber reinforced polymer (GFRP) composite materials has been proven to be challenging due to their high mechanical performance and high resistance to harsh chemical and thermal conditions. This work discusses the efforts made in the past to mechanically process GFRP waste materials by cutting them into large-sized (cm scale) pieces, as opposed to pulverization, for use in concrete mixtures. These pieces can be classified into two main categories—coarse aggregate and discrete reinforcement, here referred to as “needles.” The results from all the studies show that using GFRP coarse aggregate leads to significant reductions in the compressive strength and tensile strength of concrete. However, GFRP needles lead to sizable increases in the energy absorption capacity of concrete. In addition, if the glass fibers are longitudinally aligned within the needles, these elements can substantially increase the tensile strength of concrete. Processing GFRP waste into needles requires less energy and time than that for producing GFRP coarse aggregate. Also, compared to pulverized GFRP waste, which consists of broken and separate particles of glass and resin that at best can be used as low-quality fillers, GFRP needles are high strength composite elements 
    more » « less
  5. Abstract Glass fiber-reinforced polymers (GFRP) are widely applied to enhance the strength of concrete columns due to their lightweight and high-strength characteristics. This study presents the development of a metaheuristics-guided machine learning (ML) model for predicting the compressive strength (CS) of GFRP-confined concrete columns (GFRP-CC). Traditional predictive models, primarily based on Linear or nonlinear regression, are often limited by narrow data scopes and methodological constraints. To address this gap, we propose an innovative ML model, leveraging an extensive database of 319 experimental results compiled from 41 peer-reviewed articles spanning 1991–2024. Using an artificial neural network (ANN) combined with five metaheuristic algorithms, the study aims to reduce the dependency on costly and time-intensive laboratory testing. The model development considered eight key parameters: diameter of the compression member (D), height of the compression member (H), compressive strength of unconfined concrete (f′co), GFRP reinforcement ratio (ρf), tensile modulus of elasticity of GFRP (Ef), ultimate tensile strength of GFRP (ff), nominal thickness of GFRP reinforcement (tf), and number of GFRP layers. Among the tested models, the Stochastic Paint Optimizer (SPO)-ANN model demonstrated the highest accuracy, achieving a coefficient of determination of 0.9630 with minimal error values. To ensure transparency and interpretability, SHapley Additive exPlanations (SHAP), Olden methodologies, and Partial dependence were employed to elucidate the relative importance of contributing features. Critical factors influencing the CS of GFRP-CC included the thickness of GFRP reinforcement, tensile strength, and layer count. A user-friendly graphical interface was developed to facilitate practical adoption, enabling researchers and practitioners to model CFRP-CC compressive strength efficiently. This work represents a paradigm shift in concrete research, emphasizing sophisticated, data-driven methodologies that bridge the gap between experimental data and practical applications. 
    more » « less