skip to main content

This content will become publicly available on November 1, 2022

Title: Fiber Reinforced Compressed Earth Blocks: Evaluating Flexural Strength Characteristics Using Short Flexural Beams
There are ongoing research efforts directed at addressing strength limitations of compressed earth blocks (CEB) that inhibit their deployment for structural applications, particularly in areas where masonry systems are regularly subjected to lateral loads from high winds. In this paper, the authors focus specifically on the extent to which polypropylene (PP) fibers can be used to enhance the flexural performance of CEB. Cementitious matrices used for CEB production exhibit low tensile and flexural strength (brittle) properties. This work investigates plain (unreinforced) and fiber-reinforced specimens (short flexural beams) with fiber mass content of 0.2, 0.4, 0.6, 0.8, and 1.0% and ordinary Portland cement (OPC) content of 8%. The influence of the inclusion of fiber was based on tests conducted using the Standard Test Method for Flexural Performance of Fiber-Reinforced Concrete (ASTM C1609). Material properties that were quantified included first-peak strength, peak strength, equivalent flexural strength, residual strength, and flexural toughness. There was an observed improvement in the performance of the soil-fiber matrixes based on these results of these tests. It was also observed that when the fiber content exceeded 0.6% and above, specimens exhibited a deflection- hardening behavior; an indication of improvement in ductility. An equivalent flexural strength predictive model is more » proposed. « less
Authors:
; ;
Award ID(s):
2019754 1131175
Publication Date:
NSF-PAR ID:
10319743
Journal Name:
Materials
Volume:
14
Issue:
22
ISSN:
1996-1944
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Pellet-based extrusion deposition of carbon fiber-reinforced composites at high material deposition rates has recently gained much attention due to its applications in large-scale additive manufacturing. The mechanical and physical properties of large-volume components largely depend on their reinforcing fiber length. However, very few studies have been done thus far to have a direct comparison of additively fabricated composites reinforced with different carbon fiber lengths. In this study, a new additive manufacturing (AM) approach to fabricate long fiber-reinforced polymer (LFRP) was first proposed. A pellet-based extrusion deposition method was implemented, which directly used thermoplastic pellets and continuous fiber tows asmore »feedstock materials. Discontinuous long carbon fibers, with an average fiber length of 20.1 mm, were successfully incorporated into printed LFRP samples. The printed LFRP samples were compared with short fiber-reinforced polymer (SFRP) and continuous fiber-reinforced polymer (CFRP) counterparts through mechanical tests and microstructural analyses. The carbon fiber dispersion, distribution of carbon fiber length and orientation, and fiber wetting were studied. As expected, a steady increase in flexural strength was observed with increasing fiber length. The carbon fibers were highly oriented along the printing direction. A more uniformly distributed discontinuous fiber reinforcement was found within printed SFRP and LFRP samples. Due to decreased fiber impregnation time and lowered impregnation rate, the printed CFRP samples showed a lower degree of impregnation and worse fiber wetting conditions. The feasibility of the proposed AM methods was further demonstrated by fabricating large-volume components with complex geometries.« less
  2. Flexural and thermomechanical properties of the epoxy-based carbon fiber composites (CFCs) on addition of single and binary nanoparticles (nanoclay and graphene) have been investigated. It was found that nanoclay acts more effectively in increasing the stiffness of the CFCs, whereas graphene is more effective in achieving higher strength. Nanoclay-added samples exhibited highest flexural (64.5 GPa) and storage (25.3 GPa) modulus among all types. Graphene-added samples showed highest improvement (by 21%) in flexural strength and exhibited most stable thermomechanical properties with highest energy dissipation capability (3.1 GPa loss modulus) in flexural test and dynamic mechanical analysis (DMA), respectively. By contrast, additionmore »of binary nanoparticles reduced the stiffness and significantly increased the strain to failure (42%) of the composites. Optical microscopy and scanning electron microscopy indicated that addition of nanoparticles significantly reduced delamination and matrix cracking of the CFCs because of strong interfacial bonding and toughened matrix, respectively.« less
  3. Fiber reinforced polymer (FRP) composite materials have been used in a variety of civil and infrastructure applications since the early1980s, including in wind turbine blades. The world is now confronting the problem of how to dispose of decommissioned blades in an environmentally sustainable manner. One proposed solution is to repurpose the blades for use in new structures. One promising repurposing application is in pedestrian and cycle bridges. This paper reports on the characterization of a 13.4-m long FRP wind blade manufactured by LM Windpower (Kolding, Demark) in 1994. Two blades of this type were used as girders for a pedestrianmore »bridge on a greenway (walking and biking trail) in Cork, Ireland. The as-received geometric, material, and structural properties of the 27 year-old blade were obtained for use in the structural design of the bridge. The material tests included physical (volume fraction and laminate architecture) and mechanical (tension and compression) tests at multiple locations. Full-scale flexural testing of a 4-m long section of the blade between 7 and 11 m from the root of the blade was performed to determine the load-deflection behavior, ultimate capacity, strain history, and failure modes when loaded to failure. Key details of the testing and the results are provided. The results of the testing revealed that the FRP material is still in excellent condition and that the blade has the strength and stiffness in flexure to serve as a girder for the bridge constructed.« less
  4. Aramid fiber reinforced polymer composites have been shown to exhibit impressive mechanical properties, including high strength-to-weight ratio, excellent abrasion resistance, and exceptional ballistic performance. For these reasons, aramid composites have been heavily used in high impact loading environments where ballistic properties are vital. In-situ damage monitoring of aramid composites under dynamic loading conditions typically requires externally bonded sensors, which add bulk and are limited by size and space constraints. To overcome these limitations, this work presents a piezoresistive laser induced graphene (LIG) interface for embedded impact sensing in aramid fiber reinforced composites. Through the monitoring of electrical impedance during ballisticmore »impact, information regarding time and severity of the impact is obtained. The impact velocity correlates with the impedance change of the composites, due to delamination between aramid plies and damage to the LIG interface. The delamination length in Mode I specimens also correlates to changes in electrical impedance of the composite. The interlaminar fracture toughness and areal-density-specific V50 of the LIG aramid composites increased relative to untreated aramid composites. This work demonstrates a methodology to form multifunctional aramid-based composites with a LIG interface that provides both improved toughness and imbedded sensing of impact and damage severity during ballistic impact.« less
  5. 3-point flexural fatigue and Mode I interlaminar fracture tests were done to study the fatigue life and fracture toughness of nanoclay added carbon fiber epoxy composites. Fatigue life data was analyzed using Weibull distribution function, validated with Kolmogorov-Smirnov goodness-of-fit, and predicted by combined Weibull and Sigmoidal models, respectively. The nanophased samples showed more than 300% improvement in mean and predicted fatigue life. At 0.7 stress level, the nanophased samples passed the ‘run-out’ fatigue criteria (10 6 cycles), whereas, the neat samples failed much earlier. The interlaminar fracture toughness of nanophased samples was also enhanced significantly by 71% over neat samples.more »Optical and scanning electron microscopic images of the nanophased fractured samples revealed certain features that improved the respective fatigue and fracture properties of the composites.« less