skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Disproportionate impacts of building materials production facilities on neighboring communities
Abstract The construction and building materials (CBMs) production industries, such as cement, steel, and plastics that are responsible for a substantial share of global CO2emissions, face increasing pressure to decarbonize. Recent legislative initiatives like the United States (US) federal Buy Clean Initiative and the World Green Building Council’s decarbonization plan for Europe highlight the urgency to reduce emissions during CBM production stages. However, there remains a gap in addressing the localized environmental and social impacts of these industries as well as a necessary understanding of how decarbonization efforts may change local impacts. This study introduces a framework for quantifying the disproportionate impacts (Id) of 12 CBM production facility categories on communities of color and low-income demographics across the US. Using geographical and environmental data from the 2017 US National Emissions Inventory (NEI), we assess these impacts at four spatial scales: census tract, county, state, and national. Results show that across all scales, many CBM production facilities impose disproportionate impacts. The geographical disproportionate impact (IG,d) shows the greatest burdens at the broadest spatial scales, whereas the environmental disproportionate impact (IE,d) indicates highest burdens at more localized levels. Based on this spatial understanding, we provide methods that can be implemented to support community engagement and mitigate damages to populations neighboring industrial materials manufacturing. These findings offer valuable insights into the relationship between facility locations, emissions, and demographic groups, providing a basis for more targeted environmental justice policies aimed at mitigating these disproportionate impacts.  more » « less
Award ID(s):
2143981
PAR ID:
10608149
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Environmental Research: Infrastructure and Sustainability
Volume:
5
Issue:
1
ISSN:
2634-4505
Page Range / eLocation ID:
015001
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Graphite is a commonly used raw material across many industries and the demand for high‐quality graphite has been increasing in recent years, especially as a primary component for lithium‐ion batteries. However, graphite production is currently limited by production shortages, uneven geographical distribution, and significant environmental impacts incurred from conventional processing. Here, an efficient method of synthesizing biomass‐derived graphite from biochar is presented as a sustainable alternative to natural and synthetic graphite. The resulting bio‐graphite equals or exceeds quantitative quality metrics of spheroidized natural graphite, achieving a RamanID/IGratio of 0.051 and crystallite size parallel to the graphene layers (La) of 2.08 µm. This bio‐graphite is directly applied as a raw input to liquid‐phase exfoliation of graphene for the scalable production of conductive inks. The spin‐coated films from the bio‐graphene ink exhibit the highest conductivity among all biomass‐derived graphene or carbon materials, reaching 3.58 ± 0.16 × 104S m−1. Life cycle assessment demonstrates that this bio‐graphite requires less fossil fuel and produces reduced greenhouse gas emissions compared to incumbent methods for natural, synthesized, and other bio‐derived graphitic materials. This work thus offers a sustainable, locally adaptable solution for producing state‐of‐the‐art graphite that is suitable for bio‐graphene and other high‐value products. 
    more » « less
  2. Abstract. Accurate and comprehensive quantification of oil and gas methane emissions is pivotal in informing effective methane mitigation policies while also supporting the assessment and tracking of progress towards emissions reduction targets set by governments and industry. While national bottom-up source-level inventories are useful for understanding the sources of methane emissions, they are often unrepresentative across spatial scales, and their reliance on generic emission factors produces underestimations when compared with measurement-based inventories. Here, we compile and analyze previously reported ground-based facility-level methane emissions measurements (n=1540) in the major US oil- and gas-producing basins and develop representative methane emission profiles for key facility categories in the US oil and gas supply chain, including well sites, natural-gas compressor stations, processing plants, crude-oil refineries, and pipelines. We then integrate these emissions data with comprehensive spatial data on national oil and gas activity to estimate each facility's mean total methane emissions and uncertainties for the year 2021, from which we develop a mean estimate of annual national methane emissions resolved at 0.1° × 0.1° spatial scales (∼ 10 km × 10 km). From this measurement-based methane emissions inventory (EI-ME), we estimate total US national oil and gas methane emissions of approximately 16 Tg (95 % confidence interval of 14–18 Tg) in 2021, which is ∼ 2 times greater than the EPA Greenhouse Gas Inventory. Our estimate represents a mean gas-production-normalized methane loss rate of 2.6 %, consistent with recent satellite-based estimates. We find significant variability in both the magnitude and spatial distribution of basin-level methane emissions, ranging from production-normalized methane loss rates of < 1 % in the gas-dominant Appalachian and Haynesville regions to > 3 %–6 % in oil-dominant basins, including the Permian, Bakken, and the Uinta. Additionally, we present and compare novel comprehensive wide-area airborne remote-sensing data and results for total area methane emissions and the relative contributions of diffuse and concentrated methane point sources as quantified using MethaneAIR in 2021. The MethaneAIR assessment showed reasonable agreement with independent regional methane quantification results in sub-regions of the Permian and Uinta basins and indicated that diffuse area sources accounted for the majority of the total oil and gas emissions in these two regions. Our assessment offers key insights into plausible underlying drivers of basin-to-basin variabilities in oil and gas methane emissions, emphasizing the importance of integrating measurement-based data when developing high-resolution spatially explicit methane inventories in support of accurate methane assessment, attribution, and mitigation. The high-resolution spatially explicit EI-ME inventory is publicly available at https://doi.org/10.5281/zenodo.10734299 (Omara, 2024). 
    more » « less
  3. Fired clay bricks (FCBs) are a dominant building material globally due to their low cost and simplicity of production, especially in low- and middle-income countries. With a projected rising housing demand, commensurate growth in brick demand is anticipated, the production of which could result in significant greenhouse gas (GHG) emissions. Robust models are needed to estimate brick demand and emissions to systematically address decarbonization pathways. Few sources report production values; hence, we present two novel proxy models: (i) a consumption prediction model, relying on country-specific clay extraction data, dynamic building stock modeling, and average material intensity use allowing for projections to 2050; and (ii) a GHG emissions model, using literature-based data and production technology-specific inputs. Based on these models, the current global FCB consumption is estimated as 2.18 Gt annually, resulting in approximately 500 million tCO2e (1% of current global GHG emissions). If unaddressed, this fraction could increase to 3.5–5% in 2050 considering a moderate SSP 2-4.5 climate change mitigation scenario. Consequently, we explored three potential decarbonization pathways: (i) improving energy efficiency; (ii) shifting production to best practices; and (iii) replacing half of FCB demand with hollow concrete blocks, resulting in 27%, 49%, and 51% reduction in GHG emissions, respectively. 
    more » « less
  4. Globally, the production of concrete is responsible for 5% to 8% of anthropogenic CO2 emissions. Cement, a primary ingredient in concrete, forms a glue that holds concrete together when combined with water. Cement embodies approximately 90% of the greenhouse gas emissions associated with concrete production, and decarbonization methods focus primarily on cement production. But mitigation strategies can accrue throughout the concrete life cycle. Decarbonization strategies in cement manufacture, use, and disposal can be rapidly implemented to address the global challenge of equitably meeting societal needs and climate goals. This review describes (a) the development of our reliance on cement and concrete and the consequent environmental impacts, (b) pathways to decarbonization throughout the concrete value chain, and (c) alternative resources that can be leveraged to further reduce emissions while meeting global demands. We close by highlighting a research agenda to mitigate the climate damages from our continued dependence on cement. 
    more » « less
  5. Abstract Rice is an important global crop while also contributing significant anthropogenic methane (CH4) emissions. To support the future of rice production, more information is needed on the impacts of sustainability-driven management used to grow rice with lower associated methane emissions. Recent support for the impacts of different growing practices in the US has prompted the application of a regional methodology (Tier 2) to estimate methane emissions in different rice growing regions. The methodology estimates rice methane emissions from the US Mid-South (MdS) and California (Cal) using region-specific scaling factors applied to a region-specific baseline flux. In our study, we leverage land cover data and soil clay content to estimate methane emissions using this approach, while also examining how changes in common production practices can affect overall emissions in the US. Our results indicated US rice cultivation produced between 0.32 and 0.45 Tg CH4annually, which were approximately 7% and 42% lower on average compared to Food and Agriculture Organization of the UN (FAO) and US Environmental Protection Agency (EPA) inventories, respectively. Our estimates were 63% greater on average compared to similar methods that lack regional context. Introducing aeration events into irrigation resulted in the greatest methane reductions across both regions. When accounting for differences between baseline and reduction scenarios, the US MdS typically had higher mitigation potential compared to Cal. The differences in cumulative mitigation potential across the 2008–2020 period were likely driven by lower production area clay content for the US MdS compared to Cal. The added spatial representation in the Tier 2 approach is useful in surveying how impactful methane-reducing practices might be within and across regions. 
    more » « less