skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on February 1, 2026

Title: Watershed‐Scale Runoff Efficiency Response to Climate Variability
ABSTRACT The fraction of precipitation converted to stream discharge within a watershed, termed as runoff efficiency, may shift as climate changes. Runoff efficiency is known to be temperature‐sensitive in some watersheds, but temperature sensitivity is unquantified in many other watersheds. We identify regions where runoff efficiency is temperature‐sensitive using 942 watersheds, minimally influenced by anthropogenic activity, across the continental United States and Canada. Stepwise regression using historical discharge and climate records shows that runoff efficiency in 10 of 16 hydrologically similar hydro‐regions is sensitive to temperature, expanding the number of locations expected to experience temperature‐driven water stress, particularly in the North American continental interior. Runoff efficiency in all hydro‐regions demonstrates sensitivity to precipitation, but during wet years, runoff efficiency temporarily decreases, likely reflecting increasing groundwater storage. The temporary decrease in runoff efficiency is followed by an increase in the following year, likely due to the release of stored groundwater. This effect suggests changes in runoff efficiency help to stabilise watersheds, making it more difficult to both enter and leave drought as climate changes. The latter effect may partially explain observations of hydrologic drought persistence after meteorological drought ends. Understanding regional temperature sensitivity and the multiple‐year effect of precipitation will improve the ability to forecast runoff efficiency.  more » « less
Award ID(s):
1951469
PAR ID:
10608189
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Hydrological Processes
Volume:
39
Issue:
2
ISSN:
0885-6087
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT The Northeast United States exhibits significant spatial heterogeneity in flood seasonality, with spring snowmelt‐driven floods historically dominating northern areas, while other regions show more varied flood seasonality. While it is well documented that since 1996 there has been a marked increase in extreme precipitation across this region, the response of flood seasonality to these changes in extreme precipitation and the spatial distribution of these effects remain uncertain. Here we show that, historically, snowmelt‐dominated northern regions were relatively insensitive to changes in extreme precipitation. However, with climate warming, the dominance of snowmelt floods is decreasing and thus the extreme flood regimes in northern regions are increasingly susceptible to changes in extreme precipitation. While extreme precipitation increased everywhere in the Northeastern United States in 1996, it has since returned to near pre‐1996 levels in the coastal north while remaining elevated in the inland north. Thus, the inland north region has and continues to experience the greatest changes in extreme flooding seasonality, including a substantial rise in floods outside the historical spring flood season, particularly in smaller watersheds. Further analysis reveals that while early winter floods are increasingly common, the magnitude of cold season floods (Nov‐May) have remained unchanged over time. In contrast, warm season floods (June‐Oct), historically less significant, are now increasing in both frequency and magnitude in the inland north. Our results highlight that treating the entire Northeast as a uniform hydroclimatic region conceals significant regional variations in extreme discharge trends and, more generally, climate warming will likely increase the sensitivity of historically snowmelt dominated watersheds to extreme precipitation. Understanding this spatial variability in increased extreme precipitation and increased sensitivity to extreme precipitation is crucial for enhancing disaster preparedness and refining water management strategies in affected regions. 
    more » « less
  2. null (Ed.)
    Global hydroclimatic changes from 1950 to 2018 are analyzed using updated data of land precipitation, streamfow, and an improved form of the Palmer Drought Severity Index. The historical changes are then compared with climate model-simulated response to external forcing to determine how much of the recent change is forced response. It is found that precipitation has increased from 1950 to 2018 over mid-high latitude Eurasia, most North America, Southeast South America, and Northwest Australia, while it has decreased over most Africa, eastern Australia, the Mediterranean region, the Middle East, and parts of East Asia, central South America, and the Pacifc coasts of Canada. Streamfow records largely confrm these precipitation changes. The wetting trend over Northwest Australia and Southeast South America is most pronounced in austral summer while the drying over Africa and wetting trend over mid-high latitude Eurasia are seen in all seasons. Coupled with the drying caused by rising surface temperatures, these precipitation changes have greatly increased the risk of drought over Africa, southern Europe, East Asia, eastern Australia, Northwest Canada, and southern Brazil. Global land precipitation and continental freshwater discharge show large interannual and inter-decadal variations, with negative anomalies during El Niño and following major volcanic eruptions in 1963, 1982, and 1991; whereas their decadal variations are correlated with the Interdecadal Pacifc Oscillation (IPO) with IPO’s warm phase associated with low land precipitation and continental discharge. The IPO and Atlantic multidecadal variability also dominate multidecadal variations in land aridity, accounting for 90% of the multidecadal variance. CMIP5 multi-model ensemble mean shows decreased precipitation and runoff and increased risk of drought during 1950–2018 over Southwest North America, Central America, northern and central South America (including the Amazon), southern and West Africa, the Mediterranean region, and Southeast Asia; while the northern mid-high latitudes, Southeast South America, and Northwest Australia see increased precipitation and runoff. The consistent spatial patterns between the observed changes and the model-simulated response suggest that many of the observed drying and wetting trends since 1950 may have resulted at least partly from historical external forcing. However, the drying over Southeast Asia and wetting over Northwest Australia are absent in the 21st century projections. 
    more » « less
  3. ABSTRACT Changes in the volume, rate, and timing of the snowmelt water pulse have profound implications for seasonal soil moisture, evapotranspiration (ET), groundwater recharge, and downstream water availability, especially in the context of climate change. Here, we present an empirical analysis of water available for runoff using five eddy covariance towers located in continental montane forests across a regional gradient of snow depth, precipitation seasonality, and aridity. We specifically investigated how energy‐water asynchrony (i.e., snowmelt timing relative to atmospheric demand), surface water input intensity (rain and snowmelt), and observed winter ET (winter AET) impact multiple water balance metrics that determine water available for runoff (WAfR). Overall, we found that WAfR had the strongest relationship with energy‐water asynchrony (adjustedr2 = 0.52) and that winter AET was correlated to total water year evapotranspiration but not to other water balance metrics. Stepwise regression analysis demonstrated that none of the tested mechanisms were strongly related to the Budyko‐type runoff anomaly (highest adjustedr2 = 0.21). We, therefore, conclude that WAfR from continental montane forests is most sensitive to the degree of energy‐water asynchrony that occurs. The results of this empirical study identify the physical mechanisms driving variability of WAfR in continental montane forests and are thus broadly relevant to the hydrologic management and modelling communities. 
    more » « less
  4. Abstract. Assessing impacts of climate change on hydrologic systemsis critical for developing adaptation and mitigation strategies for waterresource management, risk control, and ecosystem conservation practices. Suchassessments are commonly accomplished using outputs from a hydrologic modelforced with future precipitation and temperature projections. The algorithmsused for the hydrologic model components (e.g., runoff generation) canintroduce significant uncertainties into the simulated hydrologic variables.Here, a modeling framework was developed that integrates multiple runoffgeneration algorithms with a routing model and associated parameteroptimizations. This framework is able to identify uncertainties from bothhydrologic model components and climate forcings as well as associatedparameterization. Three fundamentally different runoff generationapproaches, runoff coefficient method (RCM, conceptual), variableinfiltration capacity (VIC, physically based, infiltration excess), andsimple-TOPMODEL (STP, physically based, saturation excess), were coupledwith the Hillslope River Routing model to simulate surface/subsurface runoffand streamflow. A case study conducted in Santa Barbara County, California,reveals increased surface runoff in February and March but decreasedrunoff in other months, a delayed (3 d, median) and shortened (6 d,median) wet season, and increased daily discharge especially for theextremes (e.g., 100-year flood discharge, Q100). The Bayesian modelaveraging analysis indicates that the probability of such an increase can be up to85 %. For projected changes in runoff and discharge, general circulationmodels (GCMs) and emission scenarios are two major uncertainty sources,accounting for about half of the total uncertainty. For the changes inseasonality, GCMs and hydrologic models are two major uncertaintycontributors (∼35 %). In contrast, the contribution ofhydrologic model parameters to the total uncertainty of changes in thesehydrologic variables is relatively small (<6 %), limiting theimpacts of hydrologic model parameter equifinality in climate change impactanalysis. This study provides useful information for practices associatedwith water resources, risk control, and ecosystem conservation and forstudies related to hydrologic model evaluation and climate change impactanalysis for the study region as well as other Mediterranean regions. 
    more » « less
  5. Animals use climate-related environmental cues to fine-tune breeding timing and investment to match peak food availability. In birds, spring temperature is a commonly documented cue used to initiate breeding, but with global climate change, organisms are experiencing both directional changes in ambient temperatures and extreme year-to-year precipitation fluctuations. Montane environments exhibit complex climate patterns where temperatures and precipitation change along elevational gradients, and where exacerbated annual variation in precipitation has resulted in extreme swings between heavy snow and drought. We used 10 years of data to investigate how annual variation in climatic conditions is associated with differences in breeding phenology and reproductive performance in resident mountain chickadees (Poecile gambeli) at two elevations in the northern Sierra Nevada mountains, USA. Variation in spring temperature was not associated with differences in breeding phenology across elevations in our system. Greater snow accumulation was associated with later breeding initiation at high, but not low, elevation. Brood size was reduced under drought, but only at low elevation. Our data suggest complex relationships between climate and avian reproduction and point to autumn climate as important for reproductive performance, likely via its effect on phenology and abundance of invertebrates. 
    more » « less