Title: Breaking the All Subsets Barrier for Min k-Cut
In the Min k-Cut problem, the input is a graph G and an integer k. The task is to find a partition of the vertex set of G into k parts, while minimizing the number of edges that go between different parts of the partition. The problem is NP-complete, and admits a simple 3ⁿ⋅n^𝒪(1) time dynamic programming algorithm, which can be improved to a 2ⁿ⋅n^𝒪(1) time algorithm using the fast subset convolution framework by Björklund et al. [STOC'07]. In this paper we give an algorithm for Min k-Cut with running time 𝒪((2-ε)ⁿ), for ε > 10^{-50}. This is the first algorithm for Min k-Cut with running time 𝒪(cⁿ) for c < 2. more »« less
Makarychev, Yury; Pittu, Madhusudhan Reddy; Vakilian, Ali
(, Schloss Dagstuhl – Leibniz-Zentrum für Informatik)
Ene, Alina; Chattopadhyay, Eshan
(Ed.)
We study the classic Max-Cut problem under multiple cardinality constraints, which we refer to as the Constrained Max-Cut problem. Given a graph G = (V, E), a partition of the vertices into c disjoint parts V₁, …, V_c, and cardinality parameters k₁, …, k_c, the goal is to select a set S ⊆ V such that |S ∩ V_i| = k_i for each i ∈ [c], maximizing the total weight of edges crossing S (i.e., edges with exactly one endpoint in S).\r\nBy designing an approximate kernel for Constrained Max-Cut and building on the correlation rounding technique of Raghavendra and Tan (2012), we present a (0.858 - ε)-approximation algorithm for the problem when c = O(1). The algorithm runs in time O(min{k/ε, n}^poly(c/ε) + poly(n)), where k = ∑_{i∈[c]} k_i and n = |V|. This improves upon the (1/2 + ε₀)-approximation of Feige and Langberg (2001) for Max-Cut_k (the special case when c = 1, k₁ = k), and generalizes the (0.858 - ε)-approximation of Raghavendra and Tan (2012), which only applies when min{k,n-k} = Ω(n) and does not handle multiple constraints.\r\nWe also establish that, for general values of c, it is NP-hard to determine whether a feasible solution exists that cuts all edges. Finally, we present a 1/2-approximation algorithm for Max-Cut under an arbitrary matroid constraint.
Inamdar, Tanmay; Lokshtanov, Daniel; Saurabh, Saket; Surianarayanan, Vaishali
(, Schloss Dagstuhl – Leibniz-Zentrum für Informatik)
Gørtz, Inge Li; Farach-Colton, Martin; Puglisi, Simon J; Herman, Grzegorz
(Ed.)
In the Minimum Bisection problem input is a graph G and the goal is to partition the vertex set into two parts A and B, such that ||A|-|B|| ≤ 1 and the number k of edges between A and B is minimized. The problem is known to be NP-hard, and assuming the Unique Games Conjecture even NP-hard to approximate within a constant factor [Khot and Vishnoi, J.ACM'15]. On the other hand, a 𝒪(log n)-approximation algorithm [Räcke, STOC'08] and a parameterized algorithm [Cygan et al., ACM Transactions on Algorithms'20] running in time k^𝒪(k) n^𝒪(1) is known. The Minimum Bisection problem can be viewed as a clustering problem where edges represent similarity and the task is to partition the vertices into two equally sized clusters while minimizing the number of pairs of similar objects that end up in different clusters. Motivated by a number of egregious examples of unfair bias in AI systems, many fundamental clustering problems have been revisited and re-formulated to incorporate fairness constraints. In this paper we initiate the study of the Minimum Bisection problem with fairness constraints. Here the input is a graph G, positive integers c and k, a function χ:V(G) → {1, …, c} that assigns a color χ(v) to each vertex v in G, and c integers r_1,r_2,⋯,r_c. The goal is to partition the vertex set of G into two almost-equal sized parts A and B with at most k edges between them, such that for each color i ∈ {1, …, c}, A has exactly r_i vertices of color i. Each color class corresponds to a group which we require the partition (A, B) to treat fairly, and the constraints that A has exactly r_i vertices of color i can be used to encode that no group is over- or under-represented in either of the two clusters. We first show that introducing fairness constraints appears to make the Minimum Bisection problem qualitatively harder. Specifically we show that unless FPT=W[1] the problem admits no f(c)n^𝒪(1) time algorithm even when k = 0. On the other hand, our main technical contribution shows that is that this hardness result is simply a consequence of the very strict requirement that each color class i has exactly r_i vertices in A. In particular we give an f(k,c,ε)n^𝒪(1) time algorithm that finds a balanced partition (A, B) with at most k edges between them, such that for each color i ∈ [c], there are at most (1±ε)r_i vertices of color i in A. Our approximation algorithm is best viewed as a proof of concept that the technique introduced by [Lampis, ICALP'18] for obtaining FPT-approximation algorithms for problems of bounded tree-width or clique-width can be efficiently exploited even on graphs of unbounded width. The key insight is that the technique of Lampis is applicable on tree decompositions with unbreakable bags (as introduced in [Cygan et al., SIAM Journal on Computing'14]). An important ingredient of our approximation scheme is a combinatorial result that may be of independent interest, namely that for every k, every graph G admits a tree decomposition with adhesions of size at most 𝒪(k), unbreakable bags, and logarithmic depth.
Jana, Satyabrata; Lokshtanov, Daniel; Mandal, Soumen; Rai, Ashutosh; Saurabh, Saket
(, Schloss Dagstuhl – Leibniz-Zentrum für Informatik)
Leroux, Jérôme; Lombardy, Sylvain; Peleg, David
(Ed.)
Feedback Vertex Set (FVS) is one of the most studied vertex deletion problems in the field of graph algorithms. In the decision version of the problem, given a graph G and an integer k, the question is whether there exists a set S of at most k vertices in G such that G-S is acyclic. It is one of the first few problems which were shown to be NP-complete, and has been extensively studied from the viewpoint of approximation and parameterized algorithms. The best-known polynomial time approximation algorithm for FVS is a 2-factor approximation, while the best known deterministic and randomized FPT algorithms run in time 𝒪^*(3.460^k) and 𝒪^*(2.7^k) respectively. In this paper, we contribute to the newly established area of parameterized approximation, by studying FVS in this paradigm. In particular, we combine the approaches of parameterized and approximation algorithms for the study of FVS, and achieve an approximation guarantee with a factor better than 2 in randomized FPT running time, that improves over the best known parameterized algorithm for FVS. We give three simple randomized (1+ε) approximation algorithms for FVS, running in times 𝒪^*(2^{εk}⋅ 2.7^{(1-ε)k}), 𝒪^*(({(4/(1+ε))^{(1+ε)}}⋅{(ε/3)^ε})^k), and 𝒪^*(4^{(1-ε)k}) respectively for every ε ∈ (0,1). Combining these three algorithms, we obtain a factor (1+ε) approximation algorithm for FVS, which has better running time than the best-known (randomized) FPT algorithm for every ε ∈ (0, 1). This is the first attempt to look at a parameterized approximation of FVS to the best of our knowledge. Our algorithms are very simple, and they rely on some well-known reduction rules used for arriving at FPT algorithms for FVS.
Carlson, Charlie; Jafarov, Jafar; Makarychev, Konstantin; Makarychev, Yury; Shan, Liren
(, Proceedings of the European Symposium on Algorithms)
Gørtz, Inge Li; Farach-Colton, Martin; Puglisi, Simon J; Herman, Grzegorz
(Ed.)
We consider variants of the classic Multiway Cut problem. Multiway Cut asks to partition a graph G into k parts so as to separate k given terminals. Recently, Chandrasekaran and Wang (ESA 2021) introduced l_p-norm Multiway Cut, a generalization of the problem, in which the goal is to minimize the l_p norm of the edge boundaries of k parts. We provide an O(log^{1/2} n log^{1/2 + 1/p} k) approximation algorithm for this problem, improving upon the approximation guarantee of O(log^{3/2} n log^{1/2} k) due to Chandrasekaran and Wang. We also introduce and study Norm Multiway Cut, a further generalization of Multiway Cut. We assume that we are given access to an oracle, which answers certain queries about the norm. We present an O(log^{1/2} n log^{7/2} k) approximation algorithm with a weaker oracle and an O(log^{1/2} n log^{5/2} k) approximation algorithm with a stronger oracle. Additionally, we show that without any oracle access, there is no n^{1/4-ε} approximation algorithm for every ε > 0 assuming the Hypergraph Dense-vs-Random Conjecture.
We consider the problem of enumerating optimal solutions for two hypergraph k-partitioning problems, namely, Hypergraph-k-Cut and Minmax-Hypergraph-k-Partition. The input in hypergraph k-partitioning problems is a hypergraph [Formula: see text] with positive hyperedge costs along with a fixed positive integer k. The goal is to find a partition of V into k nonempty parts [Formula: see text]—known as a k-partition—so as to minimize an objective of interest. (1) If the objective of interest is the maximum cut value of the parts, then the problem is known as Minmax-Hypergraph-k-Partition. A subset of hyperedges is a minmax-k-cut-set if it is the subset of hyperedges crossing an optimum k-partition for Minmax-Hypergraph-k-Partition. (2) If the objective of interest is the total cost of hyperedges crossing the k-partition, then the problem is known as Hypergraph-k-Cut. A subset of hyperedges is a min-k-cut-set if it is the subset of hyperedges crossing an optimum k-partition for Hypergraph-k-Cut. We give the first polynomial bound on the number of minmax-k-cut-sets and a polynomial-time algorithm to enumerate all of them in hypergraphs for every fixed k. Our technique is strong enough to also enable an [Formula: see text]-time deterministic algorithm to enumerate all min-k-cut-sets in hypergraphs, thus improving on the previously known [Formula: see text]-time deterministic algorithm, in which n is the number of vertices and p is the size of the hypergraph. The correctness analysis of our enumeration approach relies on a structural result that is a strong and unifying generalization of known structural results for Hypergraph-k-Cut and Minmax-Hypergraph-k-Partition. We believe that our structural result is likely to be of independent interest in the theory of hypergraphs (and graphs). Funding: All authors were supported by NSF AF 1814613 and 1907937.
Lokshtanov, Daniel, Saurabh, Saket, and Surianarayanan, Vaishali. Breaking the All Subsets Barrier for Min k-Cut. Retrieved from https://par.nsf.gov/biblio/10608196. Web. doi:10.4230/LIPIcs.ICALP.2023.90.
Lokshtanov, Daniel, Saurabh, Saket, & Surianarayanan, Vaishali. Breaking the All Subsets Barrier for Min k-Cut. Retrieved from https://par.nsf.gov/biblio/10608196. https://doi.org/10.4230/LIPIcs.ICALP.2023.90
@article{osti_10608196,
place = {Country unknown/Code not available},
title = {Breaking the All Subsets Barrier for Min k-Cut},
url = {https://par.nsf.gov/biblio/10608196},
DOI = {10.4230/LIPIcs.ICALP.2023.90},
abstractNote = {In the Min k-Cut problem, the input is a graph G and an integer k. The task is to find a partition of the vertex set of G into k parts, while minimizing the number of edges that go between different parts of the partition. The problem is NP-complete, and admits a simple 3ⁿ⋅n^𝒪(1) time dynamic programming algorithm, which can be improved to a 2ⁿ⋅n^𝒪(1) time algorithm using the fast subset convolution framework by Björklund et al. [STOC'07]. In this paper we give an algorithm for Min k-Cut with running time 𝒪((2-ε)ⁿ), for ε > 10^{-50}. This is the first algorithm for Min k-Cut with running time 𝒪(cⁿ) for c < 2.},
journal = {},
volume = {261},
publisher = {Schloss Dagstuhl – Leibniz-Zentrum für Informatik},
author = {Lokshtanov, Daniel and Saurabh, Saket and Surianarayanan, Vaishali},
editor = {Etessami, Kousha and Feige, Uriel and Puppis, Gabriele}
}
Warning: Leaving National Science Foundation Website
You are now leaving the National Science Foundation website to go to a non-government website.
Website:
NSF takes no responsibility for and exercises no control over the views expressed or the accuracy of
the information contained on this site. Also be aware that NSF's privacy policy does not apply to this site.