With the rapid advancement of DNNs, numerous Process-in-Memory (PIM) architectures based on various memory technologies (Non-Volatile (NVM)/Volatile Memory) have been developed to accelerate AI workloads. Magnetic Random Access Memory (MRAM) is highly promising among NVMs due to its zero standby leakage, fast write/read speeds, CMOS compatibility, and high memory density. However, existing MRAM technologies such as spin-transfer torque MRAM (STT-MRAM) and spin-orbit torque MRAM (SOT-MRAM), have inherent limitations. STT-MRAM faces high write current requirements, while SOT-MRAM introduces significant area overhead due to additional access transistors. The new STT-assisted-SOT (SAS) MRAM provides an area-efficient alternative by sharing one write access transistor for multiple magnetic tunnel junctions (MTJs). This work presents the first fully digital processing-in-SAS-MRAM system to enable 8-bit floating-point (FP8) neural network inference with an application in on-device session-based recommender system. A SAS-MRAM device prototype is fabricated with 4 MTJs sharing the same SOT metal line. The proposed SAS-MRAM-based PIM macro is designed in TSMC 28nm technology. It achieves 15.31 TOPS/W energy efficiency and 269 GOPS performance for FP8 operations at 700 MHz. Compared to state-of-the-art recommender systems for the same popular YooChoose dataset, it demonstrates a 86 ×, 1.8 ×, and 1.12 × higher energy efficiency than that of GPU, SRAM-PIM, and ReRAM-PIM, respectively.
more »
« less
A Novel Energy-Efficient Sinusoidal Power Clocking-Based Writing Circuitry for the Hybrid CMOS/MTJ Architecture
Spin transfer torque magnetic random access memory (STT-MRAM) offers a promising solution for low-power and high-density memory due to its compatibility with CMOS, higher density, scalable nature, and non-volatility. However, the higher energy required to write bit cells has remained a key challenge for its adaptation into battery-operated smart handheld devices. The existing low-energy writing solutions require additional complex control logic mechanisms, further constraining the available area. In this research, we propose a solution to design energy-efficient write circuits by incorporating two techniques together. First, we propose the sinusoidal power clocking mechanism replacing the DC power supply in the conventional CMOS design. Second, we propose three lookup table (LUT)-based control logic circuits and one write circuit to reduce the area and further minimize energy dissipation. The experimental results are verified over the case study implementations of 4×4 STT-MRAM macro designed using bit cell configurations: i) one transistor and one magnetic tunnel junction (MTJ) (1T-1MTJ) and ii) four transistors and two MTJs (4T-2MTJ). The post-layout simulation for the frequency range from 250 kHz to 6.25 MHz shows that the write circuit, which uses the proposed LUT-based control logic circuits and a write driver with a sinusoidal power supply, achieves more than a 65.05% average energy saving compared to the CMOS counterpart. Furthermore, the write circuit, which uses the proposed 6T write driver with the sinusoidal power supply, shows an improvement in energy saving by more than 70.60% compared to the CMOS counterpart. We also verified that the energy-saving performance remains relatively consistent with the change in temperature and the tunneling magnetoresistance (TMR) ratio.
more »
« less
- Award ID(s):
- 2232235
- PAR ID:
- 10608255
- Publisher / Repository:
- IEEE
- Date Published:
- Journal Name:
- IEEE Transactions on Magnetics
- Volume:
- 60
- Issue:
- 9
- ISSN:
- 0018-9464
- Page Range / eLocation ID:
- 1 to 14
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Magneto-Electric FET ( MEFET ) is a recently developed post-CMOS FET, which offers intriguing characteristics for high-speed and low-power design in both logic and memory applications. In this article, we present MeF-RAM , a non-volatile cache memory design based on 2-Transistor-1-MEFET ( 2T1M ) memory bit-cell with separate read and write paths. We show that with proper co-design across MEFET device, memory cell circuit, and array architecture, MeF-RAM is a promising candidate for fast non-volatile memory ( NVM ). To evaluate its cache performance in the memory system, we, for the first time, build a device-to-architecture cross-layer evaluation framework to quantitatively analyze and benchmark the MeF-RAM design with other memory technologies, including both volatile memory (i.e., SRAM, eDRAM) and other popular non-volatile emerging memory (i.e., ReRAM, STT-MRAM, and SOT-MRAM). The experiment results for the PARSEC benchmark suite indicate that, as an L2 cache memory, MeF-RAM reduces Energy Area Latency ( EAT ) product on average by ~98% and ~70% compared with typical 6T-SRAM and 2T1R SOT-MRAM counterparts, respectively.more » « less
-
The HSC-FPGA offers an intriguing feasible architecture for the next generation of configurable fabrics, which allows embracing the advantages of both CMOS and beyond-CMOS technologies without requiring significant modification to the routing structure, programming paradigms, and synthesis tool-chain of the commercial FPGAs. In the HSC-FPGA, the intrinsic characteristics of magnetic random access memory (MRAM)-look-up table (LUT) circuits are used to implement sequential logic, while combinational logic circuits are implemented by static random access memory (SRAM)-LUTs. Fabric-level simulation results for the developed HSC-FPGA show that it can achieve at least 18%, 70%, and 15% reduction in terms of area, standby power, and read power consumption, respectively, for various ISCAS-89 and ITC-99 benchmark circuits compared to conventional SRAM-based FPGAs. The power consumption values can be further decreased by the power-gating allowed by the non-volatility feature of MRAM-LUTs. Moreover, the benefits of increased heterogeneity for reconfigurable computing is extended along realizing probabilistic computing paradigms within a fabric, which is enabled by probabilistic spin logic devices. The cooperating strengths of technology-heterogeneity and heterogeneity in computing paradigm in the proposed HSC-FPGA are leveraged to develop energy-efficient and reliability-aware training and evaluation circuits for deep belief networks with memristive crossbar arrays and p-bit based probabilistic neurons.more » « less
-
In this paper we propose a Highly Flexible InMemory (HieIM) computing platform using STT MRAM, which can be leveraged to implement Boolean logic functions without sacrificing memory functionality. It could pre-process data within memory to further reduce power hungry long distance communication between memory and processing units as in Von-Neumann computing system. HieIM can implement all the Boolean logic functions (AND/NAND, OR/NOR, XOR/XNOR) between any two cells in the same memory array, thus overcoming the `operand locality' problem in contemporary in-memory computing platform designs. To investigate the performance of HieIM, we test in-memory bulk bit-wise Boolean logic operations using different vector datasets, which shows ~ 8x energy saving and ~ 5x speedup compared to recent DRAM based in-memory computing platform. We further implement an in-memory data encryption engine design based on HieIM as another case study. With AES algorithm, it shows 51.5% and 68.9% lower energy consumption compared to CMOS-ASIC and CMOL based implementations, respectively.more » « less
-
In this paper, we propose a novel Spin-Transfer Torque Magnetic Random-Access Memory (STT-MRAM) array design that could simultaneously work as non-volatile memory and implement a reconfigure in-memory logic operation without add-on logic circuits to the memory chip. The computed output could be simply read out like a typical MRAM bit-cell through the modified peripheral circuit. Such intrinsic in-memory computation can be used to process data locally and transfers the “cooked” data to the primary processing unit (i.e. CPU or GPU) for complex computation with high precision requirement. It greatly reduces power-hungry and long distance data communication, and further leads to extreme parallelism within memory. In this work, we further propose an in-memory edge extraction algorithm as a case study to demonstrate the efficiency of in memory preprocessing methodology. The simulation results show that our edge extraction method reduces data communication as much as 8x for grayscale image, thus greatly reducing system energy consumption. Meanwhile, the F-measure result shows only ∼10% degradation compared to conventional edge detection operator, such as Prewitt, Sobel and Roberts.more » « less
An official website of the United States government

