The Princess Elizabeth Land sector of the East Antarctic Ice Sheet is a significant reservoir of grounded ice and is adjacent to regions that experienced great change during Quaternary glacial cycles and Pliocene warm episodes. The existence of an extensive subglacial water system in Princess Elizabeth Land (to date only inferred from satellite imagery) bears the potential to significantly impact the thermal and kinematic conditions of the overlying ice sheet. We confirm the existence of a major subglacial lake, herein referred to as Lake Snow Eagle (LSE), for the first time using recently acquired aerogeophysical data. We systematically investigated LSE’s geological characteristics and bathymetry from two-dimensional geophysical inversion models. The inversion results suggest that LSE is located along a compressional geologic boundary, which provides reference for future characterization of the geologic and tectonic context of this region. We estimate LSE to be ~42 km in length and 370 km2 in area, making it one of the largest subglacial lakes in Antarctica. Additionally, the airborne ice-penetrating radar observations and geophysical inversions reveal a layer of unconsolidated water-saturated sediment around and at the bottom of LSE, which—given the ultralow rates of sedimentation expected in such environments—may archive valuable records of paleoenvironmental changes and the early history of East Antarctic Ice Sheet evolution in Princess Elizabeth Land. 
                        more » 
                        « less   
                    This content will become publicly available on January 1, 2026
                            
                            Holocene hydrological evolution of subglacial Lake Snow Eagle, East Antarctica implied by englacial radiostratigraphy
                        
                    
    
            Abstract A major subglacial lake, Lake Snow Eagle (LSE), was identified in East Antarctica by airborne geophysical surveys. LSE, contained within a subglacial canyon, likely hosts a valuable sediment record of the geological and glaciological changes of interior East Antarctica. Understanding past lake activity is crucial for interpreting this record. Here, we present the englacial radiostratigraphy in the LSE area mapped by airborne ice-penetrating radar, which reveals a localized high-amplitude variation in ice unit thickness that is estimated to be ∼12 ka old. Using an ice-flow model that simulates englacial stratigraphy, we investigate the origin of this feature and its relationship to changes in ice dynamical boundary conditions. Our results reveal that local snowfall redistribution initiated around the early Holocene is likely the primary cause, resulting from a short-wavelength (∼10 km) high-amplitude (∼20 m) ice surface slope variation caused by basal lubrication over a large subglacial lake. This finding indicates an increase in LSE water volume during the Holocene, illustrating the sensitivity in volume of a major topographically constrained subglacial lake across a single glacial cycle. This study demonstrates how englacial stratigraphy can provide valuable insight into subglacial hydrological changes before modern satellite observations, both for LSE and potentially at other locations. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2019719
- PAR ID:
- 10608411
- Publisher / Repository:
- Journal of Glaciology
- Date Published:
- Journal Name:
- Journal of Glaciology
- Volume:
- 71
- ISSN:
- 0022-1430
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Over the past 50 years, the discovery and initial investigation of subglacial lakes in Antarctica have highlighted the paleoglaciological information that may be recorded in sediments at their beds. In December 2018, we accessed Mercer Subglacial Lake, West Antarctica, and recovered the first in situ subglacial lake-sediment record—120 mm of finely laminated mud. We combined geophysical observations, image analysis, and quantitative stratigraphy techniques to estimate long-term mean lake sedimentation rates (SRs) between 0.49 ± 0.12 mm a–1 and 2.3 ± 0.2 mm a–1, with a most likely SR of 0.68 ± 0.08 mm a–1. These estimates suggest that this lake formed between 53 and 260 a before core recovery (BCR), with a most likely age of 180 ± 20 a BCR—coincident with the stagnation of the nearby Kamb Ice Stream. Our work demonstrates that interconnected subglacial lake systems are fundamentally linked to larger-scale ice dynamics and highlights that subglacial sediment archives contain powerful, century-scale records of ice history and provide a modern process-based analogue for interpreting paleo–subglacial lake facies.more » « less
- 
            Abstract An array of information about the Antarctic ice sheet can be extracted from ice-sheet internal architecture imaged by airborne ice-penetrating radar surveys. We identify, trace and date three key internal reflection horizons (IRHs) across multiple radar surveys from South Pole to Dome A, East Antarctica. Ages of ~38 ± 2.2, ~90 ± 3.6 and ~162 ± 6.7 ka are assigned to the three IRHs, with verification of the upper IRH age from the South Pole ice core. The resultant englacial stratigraphy is used to identify the locations of the oldest ice, specifically in the upper Byrd Glacier catchment and the Gamburtsev Subglacial Mountains. The distinct glaciological conditions of the Gamburtsev Mountains, including slower ice flow, low geothermal heat flux and frozen base, make it the more likely to host the oldest ice. We also observe a distinct drawdown of IRH geometry around South Pole, indicative of melting from enhanced geothermal heat flux or the removal of deeper, older ice under a previous faster ice flow regime. Our traced IRHs underpin the wider objective to develop a continental-scale database of IRHs which will constrain and validate future ice-sheet modelling and the history of the Antarctic ice sheet.more » « less
- 
            Abstract Englacial layers in Antarctica and Greenland are indicators of the dynamic, rheological and subglacial configuration of the ice sheets. Airborne radar sounder data is the primary remote sensing solution for directly observing englacial layers and structures at the glacier-catchment to ice-sheet scale. However, when traditional along-track synthetic aperture radar (SAR) processing is applied, steep layers can disappear, limiting the detectability and interpretability of englacial layer geometry. This study provides a reconstruction algorithm to address the problem of destructive phase interference during the radargram formation. We develop and apply a novel SAR processor optimized for layer detection that enhances the Signal-to-Noise ratio (SNR) of specular reflectors. The algorithm also enables the automatic estimation of layer slope. We demonstrate the algorithm using data acquired at the Institute Ice Stream, West Antarctica.more » « less
- 
            Abstract The earliest airborne geophysical campaigns over Antarctica and Greenland in the 1960s and 1970s collected ice penetrating radar data on 35 mm optical film. Early subglacial topographic and englacial stratigraphic analyses of these data were foundational to the field of radioglaciology. Recent efforts to digitize and release these data have resulted in geometric and ice-thickness analysis that constrain subsurface change over multiple decades but stop short of radiometric interpretation. The primary challenge for radiometric analysis is the poorly-characterized compression applied to Z-scope records and the sparse sampling of A-scope records. Here, we demonstrate the information richness and radiometric interpretability of Z-scope records. Z-scope pixels have uncalibrated fast-time, slow-time, and intensity scales. We develop approaches for mapping each of these scales to physical units (microseconds, seconds, and signal to noise ratio). We then demonstrate the application of this calibration and analysis approach to a flight in the interior of East Antarctica with subglacial lakes and to a reflight of an East Antarctic ice shelf that was observed by both archival and modern radar. These results demonstrate the potential use of Z-scope signals to extend the baseline of radiometric observations of the subsurface by decades.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
