skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Layer optimized SAR processing and slope estimation in radar sounder data
Abstract Englacial layers in Antarctica and Greenland are indicators of the dynamic, rheological and subglacial configuration of the ice sheets. Airborne radar sounder data is the primary remote sensing solution for directly observing englacial layers and structures at the glacier-catchment to ice-sheet scale. However, when traditional along-track synthetic aperture radar (SAR) processing is applied, steep layers can disappear, limiting the detectability and interpretability of englacial layer geometry. This study provides a reconstruction algorithm to address the problem of destructive phase interference during the radargram formation. We develop and apply a novel SAR processor optimized for layer detection that enhances the Signal-to-Noise ratio (SNR) of specular reflectors. The algorithm also enables the automatic estimation of layer slope. We demonstrate the algorithm using data acquired at the Institute Ice Stream, West Antarctica.  more » « less
Award ID(s):
1745137
PAR ID:
10143101
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of Glaciology
Volume:
65
Issue:
254
ISSN:
0022-1430
Page Range / eLocation ID:
983 to 988
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Radar surveys across ice sheets typically measure numerous englacial layers that can often be regarded as isochrones. Such layers are valuable for extrapolating age–depth relationships away from ice-core locations, reconstructing palaeoaccumulation variability, and investigating past ice-sheet dynamics. However, the use of englacial layers in Antarctica has been hampered by underdeveloped techniques for characterising layer continuity and geometry over large distances, with techniques developed independently and little opportunity for inter-comparison of results. In this paper, we present a methodology to assess the performance of automated layer-tracking and layer-dip-estimation algorithms through their ability to propagate a correct age–depth model. We use this to assess isochrone-tracking techniques applied to two test case datasets, selected from CreSIS MCoRDS data over Antarctica from a range of environments including low-dip, continuous layers and layers with terminations. We find that dip-estimation techniques are generally successful in tracking englacial dip but break down in the upper and lower regions of the ice sheet. The results of testing two previously published layer-tracking algorithms show that further development is required to attain a good constraint of age–depth relationships away from dated ice cores. We recommend that auto-tracking techniques focus on improved linking of picked stratigraphy across signal disruptions to enable accurate determination of the Antarctic-wide age–depth structure. 
    more » « less
  2. null (Ed.)
    Abstract Basal units – visibly distinct englacial structures near the ice-bed interface – warrant investigation for a number of reasons. Many are of unknown composition and origin, characteristics that could provide substantial insight into subglacial processes and ice-sheet history. Their significance, moreover, is not limited to near-bed depths; these units appear to dramatically influence the flow of surrounding ice. In order to enable improved characterization of these features, we develop and apply an algorithm that allows for the automatic detection of basal units. We use a tunable layer-optimized SAR processor to distinguish these structures from the bed, isochronous englacial layers and the ice-sheet surface, presenting a conceptual framework for the use of radio-echo character in the identification of ice-sheet features. We also outline a method by which our processor could be used to place observational constraints on basal units’ configuration, composition and provenance. 
    more » « less
  3. Abstract The majority of ice mass loss from Antarctica flows through narrow, fast sliding regions of ice. The lateral boundaries of these regions, termed shear margins, are characterized by lateral shear strains in excess of ∼10−3 yr−1. Shear heating within these margins could warm ice significantly–even to the melting point–but other processes such as lateral advection of cold ice and fabric development compete with this effect. Radar observations can help constrain where temperate ice exists because englacial temperature increases electric conductivity which increases radar attenuation. We utilize the temperature‐dependent attenuation of ice to develop a novel method for constraining englacial temperature in shear margins by combining existing thermal models with very high frequency radar depth‐sounding data. We find evidence supporting temperate shear margins in 18 locations and find evidence for non‐temperate margins in 37 locations, notably in the Amundsen Sea Embayment. 
    more » « less
  4. Abstract The earliest airborne geophysical campaigns over Antarctica and Greenland in the 1960s and 1970s collected ice penetrating radar data on 35 mm optical film. Early subglacial topographic and englacial stratigraphic analyses of these data were foundational to the field of radioglaciology. Recent efforts to digitize and release these data have resulted in geometric and ice-thickness analysis that constrain subsurface change over multiple decades but stop short of radiometric interpretation. The primary challenge for radiometric analysis is the poorly-characterized compression applied to Z-scope records and the sparse sampling of A-scope records. Here, we demonstrate the information richness and radiometric interpretability of Z-scope records. Z-scope pixels have uncalibrated fast-time, slow-time, and intensity scales. We develop approaches for mapping each of these scales to physical units (microseconds, seconds, and signal to noise ratio). We then demonstrate the application of this calibration and analysis approach to a flight in the interior of East Antarctica with subglacial lakes and to a reflight of an East Antarctic ice shelf that was observed by both archival and modern radar. These results demonstrate the potential use of Z-scope signals to extend the baseline of radiometric observations of the subsurface by decades. 
    more » « less
  5. Abstract The Amundsen Sea Embayment of the West Antarctic Ice Sheet contains Thwaites and Pine Island Glaciers, two of the most rapidly changing glaciers in Antarctica. To date, Pine Island and Thwaites Glaciers have only been observed by independent airborne radar sounding surveys, but a combined cross‐basin analysis that investigates the basal conditions across the Pine Island‐Thwaites Glaciers boundary has not been performed. Here, we combine two radar surveys and correct for their differences in system parameters to produce unified englacial attenuation and basal relative reflectivity maps spanning both Pine Island and Thwaites Glaciers. Relative reflectivities range from −24.8 to +37.4 dB with the highest values beneath fast‐flowing ice at the ice sheet margin. By comparing our reflectivity results with previously derived radar specularity and trailing bed echoes at Thwaites Glacier, we find a highly diverse subglacial landscape and hydrologic conditions that evolve along‐flow. Together, these findings highlight the potential for joint airborne radar analysis with ground‐based seismic and geomorphological observations to understand variations in the bed properties and cross‐catchment interactions of ice streams and outlet glaciers. 
    more » « less