skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on May 1, 2026

Title: Inflatable acoustic metasurfaces for tunable wave focusing
Acoustic metasurfaces are two-dimensional architected materials designed to enable non-trivial control of waves, with a thickness that is either thinner than or comparable to the wavelength. However, most metasurfaces today have a fixed geometry and lack the ability to tune acoustic waves on command. This limits their ability to perform multiple functions, such as beam steering and dynamic focusing. This study introduces inflatable acoustic metasurface (IAM) lenses that enable tunable focusing. The IAMs feature two-dimensional diffractive focusing patterns embedded in a membrane that can be inflated nonplanarly through hydraulic control. It is experimentally demonstrated that inflation allows continuous focal length adjustment from –2.49λ to +3.17λ. To characterize the lens performance, changes in focal characteristics, including peak pressure, full width at half-maximum, and full length at half-maximum, are tracked at different levels of inflation. Furthermore, it is shown that IAMs can correct aberrations that occur as the angle of incidence increases in conventional planar lenses. To validate this, IAMs were tested in a concave configuration at a 20° oblique incidence angle. The results of this study may be applicable to fields requiring continuous and real-time response in tunable focusing, including acoustic imaging and communication, ultrasound surgery, and neuromodulation.  more » « less
Award ID(s):
2052827
PAR ID:
10608464
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
ASA - Acoustical Society of America
Date Published:
Journal Name:
The Journal of the Acoustical Society of America
Volume:
157
Issue:
5
ISSN:
1520-8524
Page Range / eLocation ID:
3286 to 3295
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Acoustic metasurfaces are two-dimensional materials that impart non-trivial amplitude and phase shifts on incident acoustic waves at a predetermined frequency. While acoustic metasurfaces enable extraordinary wavefront engineering capabilities, they are not developed well enough to independently control the amplitude and phase of reflected and transmitted acoustic waves simultaneously, which are governed by their geometry. We aim to solve the inverse design problem of finding a geometry to achieve a specified set of acoustic properties. The geometry is modeled by discretizing the continuous space into a finite number of elements, where each element can either be filled with air or solid material. Full wave simulations are performed to obtain the acoustic properties for a given geometry. It is computationally infeasible to simulate all geometries. To address this challenge, we develop an experimental design-based algorithm to efficiently perform the simulations. The algorithm starts with a few geometries and adaptively adds geometries to the set, such that they fill the entire space of the desired acoustic properties using a small fraction of the possible geometries. We find that the geometry needs to have at least 7 × 7 elements to obtain any given acoustic property with a tolerance of 5.4% of its maximum range. This is achieved by simulating 24 000 geometries using the proposed algorithm, which is only [Formula: see text] of the 563 × 10 12 possible geometries. The method provides a general solution to the inverse design problem that can be extended to control more acoustic properties. 
    more » « less
  2. The advent of acoustic metasurfaces (AMs), which are the two-dimensional equivalents of metamaterials, has opened up new possibilities in wave manipulation using acoustically thin structures. Through the interaction between the acoustic waves and the subwavelength scattering, AMs exhibit versatile capabilities to control acoustic wave propagation such as by steering, focusing, and absorption. In recent years, this vibrant field has expanded to include tunable, reconfigurable, and programmable control to further expand the capacity of AMs. This paper reviews recent developments in AMs and summarizes the fundamental approaches for achieving tunable control, namely, by mechanical tuning, active control, and the use of field-responsive materials. An overview of basic concepts in each category is first presented, followed by a discussion of their applications and details about their performance. The review concludes with the outlook for future directions in this exciting field. 
    more » « less
  3. State-of-the-art high-accuracy three-dimensional (3D) profilometry systems typically use a lens with a fixed focal length, making it difficult for them to measure scenes with large depth variations, especially dynamically changing ones. To address this need, this Letter proposes a novel, to the best of our knowledge, autofocusing method for high-resolution 3D profilometry with a digital fringe projection technique by (1) developing a novel continuous geometric parameter model for systems using electrically tunable lenses and (2) employing a focal plane detection algorithm. The validity of the proposed method is confirmed by experiments. 
    more » « less
  4. null (Ed.)
    Abstract Controlling and manipulating elastic/acoustic waves via artificially structured metamaterials, phononic crystals, and metasurfaces have gained an increasing research interest in the last decades. Unlike others, a metasurface is a single layer in the host medium with an array of subwavelength-scaled patterns introducing an abrupt phase shift in the wave propagation path. In this study, an elastic metasurface composed of an array of slender beam resonators is proposed to control the elastic wavefront of low-frequency flexural waves. The phase gradient based on Snell’s law is achieved by tailoring the thickness of thin beam resonators connecting two elastic host media. Through analytical and numerical models, the phase-modulated metasurfaces are designed and verified to accomplish three dynamic wave functions, namely, deflection, non-paraxial propagation, and focusing. An oblique incident wave is also demonstrated to show the versatility of the proposed design for focusing of wave energy incident from multiple directions. Experimentally measured focusing metasurface has nearly three times wave amplification at the designed focal point which validates the design and theoretical models. Furthermore, the focusing metasurface is exploited for low-frequency energy harvesting and the piezoelectric harvester is improved by almost nine times in terms of the harvested power output as compared to the baseline harvester on the pure plate without metasurface. 
    more » « less
  5. In this work we present a two-dimensional micro-scale array of individually addressable, focal length tunable, electrowetting lenses fabricated using standard microfabrication techniques. The compact, transmissive nature of these arrays opens the possibility for integration into miniature optical systems involving wavefront shaping and beam steering. 
    more » « less