Abstract Let $$V_*\otimes V\rightarrow {\mathbb {C}}$$ V ∗ ⊗ V → C be a non-degenerate pairing of countable-dimensional complex vector spaces V and $$V_*$$ V ∗ . The Mackey Lie algebra $${\mathfrak {g}}=\mathfrak {gl}^M(V,V_*)$$ g = gl M ( V , V ∗ ) corresponding to this pairing consists of all endomorphisms $$\varphi $$ φ of V for which the space $$V_*$$ V ∗ is stable under the dual endomorphism $$\varphi ^*: V^*\rightarrow V^*$$ φ ∗ : V ∗ → V ∗ . We study the tensor Grothendieck category $${\mathbb {T}}$$ T generated by the $${\mathfrak {g}}$$ g -modules V , $$V_*$$ V ∗ and their algebraic duals $$V^*$$ V ∗ and $$V^*_*$$ V ∗ ∗ . The category $${{\mathbb {T}}}$$ T is an analogue of categories considered in prior literature, the main difference being that the trivial module $${\mathbb {C}}$$ C is no longer injective in $${\mathbb {T}}$$ T . We describe the injective hull I of $${\mathbb {C}}$$ C in $${\mathbb {T}}$$ T , and show that the category $${\mathbb {T}}$$ T is Koszul. In addition, we prove that I is endowed with a natural structure of commutative algebra. We then define another category $$_I{\mathbb {T}}$$ I T of objects in $${\mathbb {T}}$$ T which are free as I -modules. Our main result is that the category $${}_I{\mathbb {T}}$$ I T is also Koszul, and moreover that $${}_I{\mathbb {T}}$$ I T is universal among abelian $${\mathbb {C}}$$ C -linear tensor categories generated by two objects X , Y with fixed subobjects $$X'\hookrightarrow X$$ X ′ ↪ X , $$Y'\hookrightarrow Y$$ Y ′ ↪ Y and a pairing $$X\otimes Y\rightarrow {\mathbf{1 }}$$ X ⊗ Y → 1 where 1 is the monoidal unit. We conclude the paper by discussing the orthogonal and symplectic analogues of the categories $${\mathbb {T}}$$ T and $${}_I{\mathbb {T}}$$ I T .
more »
« less
This content will become publicly available on March 28, 2026
The LLV Algebra for Primitive Symplectic Varieties with Isolated Singularities
We extend results of Looijenga--Lunts and Verbitsky and show that the total Lie algebra $$\mathfrak g$$ for the intersection cohomology of a primitive symplectic variety $$X$$ with isolated singularities is isomorphic to $$\mathfrak g \cong \mathfrak{so}\left(\left(IH^2(X, \mathbb Q), Q_X\right)\oplus \mathfrak h\right),$$ where $$Q_X$$ is the intersection Beauville--Bogomolov--Fujiki form and $$\mathfrak h$$ is a hyperbolic plane. This gives a new, algebraic proof for irreducible holomorphic symplectic manifolds which does not rely on the hyperk\"ahler metric. Along the way, we study the structure of $$IH^*(X, \mathbb Q)$$ as a $$\mathfrak{g}$$-representation -- with particular emphasis on the Verbitsky component, multidimensional Kuga--Satake constructions, and Mumford--Tate algebras -- and give some immediate applications concerning the $P = W$ conjecture for primitive symplectic varieties. Comment: 41 pages; Final journal version; new subsection on LLV algebra for symplectic orbifolds
more »
« less
- Award ID(s):
- 2039316
- PAR ID:
- 10608476
- Publisher / Repository:
- Free Journal Network
- Date Published:
- Journal Name:
- Épijournal de Géométrie Algébrique
- Volume:
- Volume 9
- ISSN:
- 2491-6765
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We prove an inequality that unifies previous works of the authors on the properties of the Radon transform on convex bodies including an extension of the Busemann–Petty problem and a slicing inequality for arbitrary functions. Let $$K$$ and $$L$$ be star bodies in $${\mathbb R}^n,$$ let $0<k<n$ be an integer, and let $f,g$ be non-negative continuous functions on $$K$$ and $$L$$, respectively, so that $$\|g\|_\infty =g(0)=1.$$ Then $$\begin{align*} & \frac{\int_Kf}{\left(\int_L g\right)^{\frac{n-k}n}|K|^{\frac kn}} \le \frac n{n-k} \left(d_{\textrm{ovr}}(K,\mathcal{B}\mathcal{P}_k^n)\right)^k \max_{H} \frac{\int_{K\cap H} f}{\int_{L\cap H} g}, \end{align*}$$where $|K|$ stands for volume of proper dimension, $$C$$ is an absolute constant, the maximum is taken over all $(n-k)$-dimensional subspaces of $${\mathbb R}^n,$$ and $$d_{\textrm{ovr}}(K,\mathcal{B}\mathcal{P}_k^n)$$ is the outer volume ratio distance from $$K$$ to the class of generalized $$k$$-intersection bodies in $${\mathbb R}^n.$$ Another consequence of this result is a mean value inequality for the Radon transform. We also obtain a generalization of the isomorphic version of the Shephard problem.more » « less
-
Abstract We formulate general conditions which imply that $${\mathcal L}(X,Y)$$ , the space of operators from a Banach space X to a Banach space Y , has $$2^{{\mathfrak {c}}}$$ closed ideals, where $${\mathfrak {c}}$$ is the cardinality of the continuum. These results are applied to classical sequence spaces and Tsirelson-type spaces. In particular, we prove that the cardinality of the set ofclosed ideals in $${\mathcal L}\left (\ell _p\oplus \ell _q\right )$$ is exactly $$2^{{\mathfrak {c}}}$$ for all $$1<\infty $$ .more » « less
-
Abstract We show that the wreath Macdonald polynomials for$$\mathbb {Z}/\ell \mathbb {Z}\wr \Sigma _n$$ , when naturally viewed as elements in the vertex representation of the quantum toroidal algebra$$U_{\mathfrak {q},\mathfrak {d}}(\ddot{\mathfrak {sl}}_\ell )$$ , diagonalize its horizontal Heisenberg subalgebra. Our proof makes heavy use of shuffle algebra methods, and we also obtain a new proof of existence of wreath Macdonald polynomials.more » « less
-
A<sc>bstract</sc> In this paper we discuss gauging noninvertible zero-form symmetries in two dimensions. We specialize to certain gaugeable cases, specifically, fusion categories of the form$$ \textrm{Rep}\left(\mathcal{H}\right) $$ for$$ \mathcal{H} $$ a suitable Hopf algebra (which includes the special case Rep(G) forGa finite group). We also specialize to the case that the fusion category is multiplicity-free. We discuss how to construct a modular-invariant partition function from a choice of Frobenius algebra structure on$$ {\mathcal{H}}^{\ast } $$ . We discuss how ordinaryGorbifolds for finite groupsGare a special case of the construction, corresponding to the fusion category Vec(G) = Rep(ℂ[G]*). For the cases Rep(S3), Rep(D4), and Rep(Q8), we construct the crossing kernels for general intertwiner maps. We explicitly compute partition functions in the examples of Rep(S3), Rep(D4), Rep(Q8), and$$ \textrm{Rep}\left({\mathcal{H}}_8\right) $$ , and discuss applications inc= 1 CFTs. We also discuss decomposition in the special case that the entire noninvertible symmetry group acts trivially.more » « less
An official website of the United States government
