skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on March 28, 2026

Title: The LLV Algebra for Primitive Symplectic Varieties with Isolated Singularities
We extend results of Looijenga--Lunts and Verbitsky and show that the total Lie algebra $$\mathfrak g$$ for the intersection cohomology of a primitive symplectic variety $$X$$ with isolated singularities is isomorphic to $$\mathfrak g \cong \mathfrak{so}\left(\left(IH^2(X, \mathbb Q), Q_X\right)\oplus \mathfrak h\right),$$ where $$Q_X$$ is the intersection Beauville--Bogomolov--Fujiki form and $$\mathfrak h$$ is a hyperbolic plane. This gives a new, algebraic proof for irreducible holomorphic symplectic manifolds which does not rely on the hyperk\"ahler metric. Along the way, we study the structure of $$IH^*(X, \mathbb Q)$$ as a $$\mathfrak{g}$$-representation -- with particular emphasis on the Verbitsky component, multidimensional Kuga--Satake constructions, and Mumford--Tate algebras -- and give some immediate applications concerning the $P = W$ conjecture for primitive symplectic varieties. Comment: 41 pages; Final journal version; new subsection on LLV algebra for symplectic orbifolds  more » « less
Award ID(s):
2039316
PAR ID:
10608476
Author(s) / Creator(s):
Publisher / Repository:
Free Journal Network
Date Published:
Journal Name:
Épijournal de Géométrie Algébrique
Volume:
Volume 9
ISSN:
2491-6765
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Let $$V_*\otimes V\rightarrow {\mathbb {C}}$$ V ∗ ⊗ V → C be a non-degenerate pairing of countable-dimensional complex vector spaces V and $$V_*$$ V ∗ . The Mackey Lie algebra $${\mathfrak {g}}=\mathfrak {gl}^M(V,V_*)$$ g = gl M ( V , V ∗ ) corresponding to this pairing consists of all endomorphisms $$\varphi $$ φ of V for which the space $$V_*$$ V ∗ is stable under the dual endomorphism $$\varphi ^*: V^*\rightarrow V^*$$ φ ∗ : V ∗ → V ∗ . We study the tensor Grothendieck category $${\mathbb {T}}$$ T generated by the $${\mathfrak {g}}$$ g -modules V , $$V_*$$ V ∗ and their algebraic duals $$V^*$$ V ∗ and $$V^*_*$$ V ∗ ∗ . The category $${{\mathbb {T}}}$$ T is an analogue of categories considered in prior literature, the main difference being that the trivial module $${\mathbb {C}}$$ C is no longer injective in $${\mathbb {T}}$$ T . We describe the injective hull I of $${\mathbb {C}}$$ C in $${\mathbb {T}}$$ T , and show that the category $${\mathbb {T}}$$ T is Koszul. In addition, we prove that I is endowed with a natural structure of commutative algebra. We then define another category $$_I{\mathbb {T}}$$ I T of objects in $${\mathbb {T}}$$ T which are free as I -modules. Our main result is that the category $${}_I{\mathbb {T}}$$ I T is also Koszul, and moreover that $${}_I{\mathbb {T}}$$ I T is universal among abelian $${\mathbb {C}}$$ C -linear tensor categories generated by two objects X , Y with fixed subobjects $$X'\hookrightarrow X$$ X ′ ↪ X , $$Y'\hookrightarrow Y$$ Y ′ ↪ Y and a pairing $$X\otimes Y\rightarrow {\mathbf{1 }}$$ X ⊗ Y → 1 where 1 is the monoidal unit. We conclude the paper by discussing the orthogonal and symplectic analogues of the categories $${\mathbb {T}}$$ T and $${}_I{\mathbb {T}}$$ I T . 
    more » « less
  2. Abstract We prove an inequality that unifies previous works of the authors on the properties of the Radon transform on convex bodies including an extension of the Busemann–Petty problem and a slicing inequality for arbitrary functions. Let $$K$$ and $$L$$ be star bodies in $${\mathbb R}^n,$$ let $0<k<n$ be an integer, and let $f,g$ be non-negative continuous functions on $$K$$ and $$L$$, respectively, so that $$\|g\|_\infty =g(0)=1.$$ Then $$\begin{align*} & \frac{\int_Kf}{\left(\int_L g\right)^{\frac{n-k}n}|K|^{\frac kn}} \le \frac n{n-k} \left(d_{\textrm{ovr}}(K,\mathcal{B}\mathcal{P}_k^n)\right)^k \max_{H} \frac{\int_{K\cap H} f}{\int_{L\cap H} g}, \end{align*}$$where $|K|$ stands for volume of proper dimension, $$C$$ is an absolute constant, the maximum is taken over all $(n-k)$-dimensional subspaces of $${\mathbb R}^n,$$ and $$d_{\textrm{ovr}}(K,\mathcal{B}\mathcal{P}_k^n)$$ is the outer volume ratio distance from $$K$$ to the class of generalized $$k$$-intersection bodies in $${\mathbb R}^n.$$ Another consequence of this result is a mean value inequality for the Radon transform. We also obtain a generalization of the isomorphic version of the Shephard problem. 
    more » « less
  3. Abstract We formulate general conditions which imply that $${\mathcal L}(X,Y)$$ , the space of operators from a Banach space X to a Banach space Y , has $$2^{{\mathfrak {c}}}$$ closed ideals, where $${\mathfrak {c}}$$ is the cardinality of the continuum. These results are applied to classical sequence spaces and Tsirelson-type spaces. In particular, we prove that the cardinality of the set ofclosed ideals in $${\mathcal L}\left (\ell _p\oplus \ell _q\right )$$ is exactly $$2^{{\mathfrak {c}}}$$ for all $$1<\infty $$ . 
    more » « less
  4. Abstract We show that the wreath Macdonald polynomials for$$\mathbb {Z}/\ell \mathbb {Z}\wr \Sigma _n$$ Z / Z Σ n , when naturally viewed as elements in the vertex representation of the quantum toroidal algebra$$U_{\mathfrak {q},\mathfrak {d}}(\ddot{\mathfrak {sl}}_\ell )$$ U q , d ( sl ¨ ) , diagonalize its horizontal Heisenberg subalgebra. Our proof makes heavy use of shuffle algebra methods, and we also obtain a new proof of existence of wreath Macdonald polynomials. 
    more » « less
  5. A<sc>bstract</sc> In this paper we discuss gauging noninvertible zero-form symmetries in two dimensions. We specialize to certain gaugeable cases, specifically, fusion categories of the form$$ \textrm{Rep}\left(\mathcal{H}\right) $$ Rep H for$$ \mathcal{H} $$ H a suitable Hopf algebra (which includes the special case Rep(G) forGa finite group). We also specialize to the case that the fusion category is multiplicity-free. We discuss how to construct a modular-invariant partition function from a choice of Frobenius algebra structure on$$ {\mathcal{H}}^{\ast } $$ H . We discuss how ordinaryGorbifolds for finite groupsGare a special case of the construction, corresponding to the fusion category Vec(G) = Rep(ℂ[G]*). For the cases Rep(S3), Rep(D4), and Rep(Q8), we construct the crossing kernels for general intertwiner maps. We explicitly compute partition functions in the examples of Rep(S3), Rep(D4), Rep(Q8), and$$ \textrm{Rep}\left({\mathcal{H}}_8\right) $$ Rep H 8 , and discuss applications inc= 1 CFTs. We also discuss decomposition in the special case that the entire noninvertible symmetry group acts trivially. 
    more » « less