A<sc>bstract</sc> We develop Standard Model Effective Field Theory (SMEFT) predictions ofσ($$ \mathcal{GG} $$ →h), Γ(h→$$ \mathcal{GG} $$ ), Γ(h→$$ \mathcal{AA} $$ ) to incorporate full two loop Standard Model results at the amplitude level, in conjunction with dimension eight SMEFT corrections. We simultaneously report consistent Γ(h→$$ \overline{\Psi}\Psi $$ ) results including leading QCD corrections and dimension eight SMEFT corrections. This extends the predictions of the former processes Γ, σto a full set of corrections at$$ \mathcal{O}\left({\overline{v}}_T^2/{\varLambda}^2{\left(16{\pi}^2\right)}^2\right) $$ and$$ \mathcal{O}\left({\overline{v}}_T^4/{\Lambda}^4\right) $$ , where$$ {\overline{v}}_T $$ is the electroweak scale vacuum expectation value and Λ is the cut off scale of the SMEFT. Throughout, cross consistency between the operator and loop expansions is maintained by the use of the geometric SMEFT formalism. For Γ(h→$$ \overline{\Psi}\Psi $$ ), we include results at$$ \mathcal{O}\left({\overline{v}}_T^2/{\Lambda}^2\left(16{\pi}^2\right)\right) $$ in the limit where subleadingmΨ→ 0 corrections are neglected. We clarify how gauge invariant SMEFT renormalization counterterms combine with the Standard Model counter terms in higher order SMEFT calculations when the Background Field Method is used. We also update the prediction of the total Higgs width in the SMEFT to consistently include some of these higher order perturbative effects.
more »
« less
Notes on gauging noninvertible symmetries. Part I. Multiplicity-free cases
A<sc>bstract</sc> In this paper we discuss gauging noninvertible zero-form symmetries in two dimensions. We specialize to certain gaugeable cases, specifically, fusion categories of the form$$ \textrm{Rep}\left(\mathcal{H}\right) $$ for$$ \mathcal{H} $$ a suitable Hopf algebra (which includes the special case Rep(G) forGa finite group). We also specialize to the case that the fusion category is multiplicity-free. We discuss how to construct a modular-invariant partition function from a choice of Frobenius algebra structure on$$ {\mathcal{H}}^{\ast } $$ . We discuss how ordinaryGorbifolds for finite groupsGare a special case of the construction, corresponding to the fusion category Vec(G) = Rep(ℂ[G]*). For the cases Rep(S3), Rep(D4), and Rep(Q8), we construct the crossing kernels for general intertwiner maps. We explicitly compute partition functions in the examples of Rep(S3), Rep(D4), Rep(Q8), and$$ \textrm{Rep}\left({\mathcal{H}}_8\right) $$ , and discuss applications inc= 1 CFTs. We also discuss decomposition in the special case that the entire noninvertible symmetry group acts trivially.
more »
« less
- PAR ID:
- 10513510
- Publisher / Repository:
- Journal of High Energy Physics
- Date Published:
- Journal Name:
- Journal of High Energy Physics
- Volume:
- 2024
- Issue:
- 2
- ISSN:
- 1029-8479
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A<sc>bstract</sc> A search for the fully reconstructed$$ {B}_s^0 $$ → μ+μ−γdecay is performed at the LHCb experiment using proton-proton collisions at$$ \sqrt{s} $$ = 13 TeV corresponding to an integrated luminosity of 5.4 fb−1. No significant signal is found and upper limits on the branching fraction in intervals of the dimuon mass are set$$ {\displaystyle \begin{array}{cc}\mathcal{B}\left({B}_s^0\to {\mu}^{+}{\mu}^{-}\gamma \right)<4.2\times {10}^{-8},& m\left({\mu}^{+}{\mu}^{-}\right)\in \left[2{m}_{\mu },1.70\right]\textrm{GeV}/{c}^2,\\ {}\mathcal{B}\left({B}_s^0\to {\mu}^{+}{\mu}^{-}\gamma \right)<7.7\times {10}^{-8},&\ m\left({\mu}^{+}{\mu}^{-}\right)\in \left[\textrm{1.70,2.88}\right]\textrm{GeV}/{c}^2,\\ {}\mathcal{B}\left({B}_s^0\to {\mu}^{+}{\mu}^{-}\gamma \right)<4.2\times {10}^{-8},& m\left({\mu}^{+}{\mu}^{-}\right)\in \left[3.92,{m}_{B_s^0}\right]\textrm{GeV}/{c}^2,\end{array}} $$ at 95% confidence level. Additionally, upper limits are set on the branching fraction in the [2mμ,1.70] GeV/c2dimuon mass region excluding the contribution from the intermediateϕ(1020) meson, and in the region combining all dimuon-mass intervals.more » « less
-
A<sc>bstract</sc> The entanglement negativity$$ \mathcal{E} $$ (A:B) is a useful measure of quantum entanglement in bipartite mixed states. In random tensor networks (RTNs), which are related to fixed-area states, it was found in ref. [1] that the dominant saddles computing the even Rényi negativity$$ {\mathcal{E}}^{(2k)} $$ generically break theℤ2kreplica symmetry. This calls into question previous calculations of holographic negativity using 2D CFT techniques that assumedℤ2kreplica symmetry and proposed that the negativity was related to the entanglement wedge cross section. In this paper, we resolve this issue by showing that in general holographic states, the saddles computing$$ {\mathcal{E}}^{(2k)} $$ indeed break theℤ2kreplica symmetry. Our argument involves an identity relating$$ {\mathcal{E}}^{(2k)} $$ to thek-th Rényi entropy on subregionAB∗in the doubled state$$ {\left.|{\rho}_{AB}\right\rangle}_{A{A}^{\ast }{BB}^{\ast }} $$ , from which we see that theℤ2kreplica symmetry is broken down toℤk. Fork< 1, which includes the case of$$ \mathcal{E} $$ (A:B) atk= 1/2, we use a modified cosmic brane proposal to derive a new holographic prescription for$$ {\mathcal{E}}^{(2k)} $$ and show that it is given by a new saddle with multiple cosmic branes anchored to subregionsAandBin the original state. Using our prescription, we reproduce known results for the PSSY model and show that our saddle dominates over previously proposed CFT calculations neark= 1. Moreover, we argue that theℤ2ksymmetric configurations previously proposed are not gravitational saddles, unlike our proposal. Finally, we contrast holographic calculations with those arising from RTNs with non-maximally entangled links, demonstrating that the qualitative form of backreaction in such RTNs is different from that in gravity.more » « less
-
A<sc>bstract</sc> We present a study of$$ {\Xi}_c^0\to {\Xi}^0{\pi}^0 $$ ,$$ {\Xi}_c^0\to {\Xi}^0\eta $$ , and$$ {\Xi}_c^0\to {\Xi}^0{\eta}^{\prime } $$ decays using the Belle and Belle II data samples, which have integrated luminosities of 980 fb−1and 426 fb−1, respectively. We measure the following relative branching fractions$$ {\displaystyle \begin{array}{c}\mathcal{B}\left({\Xi}_c^0\to {\Xi}^0{\pi}^0\right)/\mathcal{B}\left({\Xi}_c^0\to {\Xi}^{-}{\pi}^{+}\right)=0.48\pm 0.02\left(\textrm{stat}\right)\pm 0.03\left(\textrm{syst}\right),\\ {}\mathcal{B}\left({\Xi}_c^0\to {\Xi}^0\eta \right)/\mathcal{B}\left({\Xi}_c^0\to {\Xi}^{-}{\pi}^{+}\right)=0.11\pm 0.01\left(\textrm{stat}\right)\pm 0.01\left(\textrm{syst}\right),\\ {}\mathcal{B}\left({\Xi}_c^0\to {\Xi}^0{\eta}^{\prime}\right)/\mathcal{B}\left({\Xi}_c^0\to {\Xi}^{-}{\pi}^{+}\right)=0.08\pm 0.02\left(\textrm{stat}\right)\pm 0.01\left(\textrm{syst}\right)\end{array}} $$ for the first time, where the uncertainties are statistical (stat) and systematic (syst). By multiplying by the branching fraction of the normalization mode,$$ \mathcal{B}\left({\Xi}_c^0\to {\Xi}^{-}{\pi}^{+}\right) $$ , we obtain the following absolute branching fraction results$$ {\displaystyle \begin{array}{c}\mathcal{B}\left({\Xi}_c^0\to {\Xi}^0{\pi}^0\right)=\left(6.9\pm 0.3\left(\textrm{stat}\right)\pm 0.5\left(\textrm{syst}\right)\pm 1.3\left(\operatorname{norm}\right)\right)\times {10}^{-3},\\ {}\mathcal{B}\left({\Xi}_c^0\to {\Xi}^0\eta \right)=\left(1.6\pm 0.2\left(\textrm{stat}\right)\pm 0.2\left(\textrm{syst}\right)\pm 0.3\left(\operatorname{norm}\right)\right)\times {10}^{-3},\\ {}\mathcal{B}\left({\varXi}_c^0\to {\Xi}^0{\eta}^{\prime}\right)=\left(1.2\pm 0.3\left(\textrm{stat}\right)\pm 0.1\left(\textrm{syst}\right)\pm 0.2\left(\operatorname{norm}\right)\right)\times {10}^{-3},\end{array}} $$ where the third uncertainties are from$$ \mathcal{B}\left({\Xi}_c^0\to {\Xi}^{-}{\pi}^{+}\right) $$ . The asymmetry parameter for$$ {\Xi}_c^0\to {\Xi}^0{\pi}^0 $$ is measured to be$$ \alpha \left({\Xi}_c^0\to {\Xi}^0{\pi}^0\right)=-0.90\pm 0.15\left(\textrm{stat}\right)\pm 0.23\left(\textrm{syst}\right) $$ .more » « less
-
A<sc>bstract</sc> Results are presented from a search for the Higgs boson decay H→Zγ, where Z→ ℓ+ℓ−withℓ= e or μ. The search is performed using a sample of proton-proton (pp) collision data at a center-of-mass energy of 13 TeV, recorded by the CMS experiment at the LHC, corresponding to an integrated luminosity of 138 fb−1. Events are assigned to mutually exclusive categories, which exploit differences in both event topology and kinematics of distinct Higgs production mechanisms to enhance signal sensitivity. The signal strengthμ, defined as the product of the cross section and the branching fraction$$ \left[\sigma \left(\textrm{pp}\to \textrm{H}\right)\mathcal{B}\left(\textrm{H}\to \textrm{Z}\upgamma \right)\right] $$ relative to the standard model prediction, is extracted from a simultaneous fit to theℓ+ℓ−γ invariant mass distributions in all categories and is measured to beμ= 2.4 ± 0.9 for a Higgs boson mass of 125.38 GeV. The statistical significance of the observed excess of events is 2.7 standard deviations. This measurement corresponds to$$ \left[\sigma \left(\textrm{pp}\to \textrm{H}\right)\mathcal{B}\left(\textrm{H}\to \textrm{Z}\upgamma \right)\right]=0.21\pm 0.08 $$ pb. The observed (expected) upper limit at 95% confidence level onμis 4.1 (1.8), where the expected limit is calculated under the background-only hypothesis. The ratio of branching fractions$$ \mathcal{B}\left(\textrm{H}\to \textrm{Z}\upgamma \right)/\mathcal{B}\left(\textrm{H}\to \upgamma \upgamma \right) $$ is measured to be$$ {1.5}_{-0.6}^{+0.7} $$ , which agrees with the standard model prediction of 0.69 ± 0.04 at the 1.5 standard deviation level.more » « less
An official website of the United States government

