Abstract The GO DNA repair system protects against GC → TA mutations by finding and removing oxidized guanine. The system is mechanistically well understood but its origins are unknown. We searched metagenomes and abundantly found the genes encoding GO DNA repair at the Lost City Hydrothermal Field (LCHF). We recombinantly expressed the final enzyme in the system to show MutY homologs function to suppress mutations. Microbes at the LCHF thrive without sunlight, fueled by the products of geochemical transformations of seafloor rocks, under conditions believed to resemble a young Earth. High levels of the reductant H2and low levels of O2in this environment raise the question, why are resident microbes equipped to repair damage caused by oxidative stress? MutY genes could be assigned to metagenome assembled genomes (MAGs), and thereby associate GO DNA repair with metabolic pathways that generate reactive oxygen, nitrogen and sulfur species. Our results indicate that cell-based life was under evolutionary pressure to cope with oxidized guanine well before O2levels rose following the great oxidation event.
more »
« less
Metagenome mining and functional analysis reveal oxidized guanine DNA repair at the Lost City Hydrothermal Field
The GO DNA repair system protects against GC → TA mutations by finding and removing oxidized guanine. The system is mechanistically well understood but its origins are unknown. We searched metagenomes and abundantly found the genes encoding GO DNA repair at the Lost City Hydrothermal Field (LCHF). We recombinantly expressed the final enzyme in the system to show MutY homologs function to suppress mutations. Microbes at the LCHF thrive without sunlight, fueled by the products of geochemical transformations of seafloor rocks, under conditions believed to resemble a young Earth. High levels of the reductant H2and low levels of O2in this environment raise the question, why are resident microbes equipped to repair damage caused by oxidative stress? MutY genes could be assigned to metagenome-assembled genomes (MAGs), and thereby associate GO DNA repair with metabolic pathways that generate reactive oxygen, nitrogen and sulfur species. Our results indicate that cell-based life was under evolutionary pressure to cope with oxidized guanine well before O2levels rose following the great oxidation event.
more »
« less
- PAR ID:
- 10608478
- Editor(s):
- Gupta, Pramodkumar Pyarelal
- Publisher / Repository:
- Public Library of Science (PLOS)
- Date Published:
- Journal Name:
- PLOS ONE
- Volume:
- 19
- Issue:
- 5
- ISSN:
- 1932-6203
- Page Range / eLocation ID:
- e0284642
- Subject(s) / Keyword(s):
- DNA repair molecular evolution great oxidation event BER base excision repair MutY
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Background: MutY initiated base excision repair (BER) protects against mutations that otherwise result from oxidative damage to guanine. The 8-oxo-7,8-dihydro-guanine lesion (OG) pairs equally well with C or A, a source of ambiguity that explains high rates of GC → TA mutations for biallelic defects in the gene encoding MUTYH in humans. MutY/MUTYH intercepts the A:OG lesion and removes the chemically correct but informationally defective adenine nucleobase. A catalytic Glu – Glu43 in Geobacillus stearothermophilus MutY (Gs MutY); Glu37 in Escherichia coli MutY (Ec MutY); Glu134 in human MUTYH – is a defining chemical motif for A:OG adenine DNA glycosylases that is not found in other helix-hairpin-helix family members. While the importance of Glu for MutY’s catalytic mechanism is well understood, its origin is unknown. Discovery: Here we tested the structural and kinetic consequences of Glu replacement and found an alternate, slower mechanism, that yields a different stereoisomer for the AP site product. The impact on catalytic rate was consistent removal of acid/base catalysis and retention of transition state stabilization. High-resolution structures for E43Q and E43S substitution variants of Gs MutY show substrate disengagement and the enzyme-generated AP product in its alpha-anomer configuration. These results suggest that acquisition of Glu was a key innovation for emergence of the MutY/MUTYH lineage from an ancestral DNA glycosylase.more » « less
-
Abstract MUTYH is a clinically important DNA glycosylase that thwarts mutations by initiating base-excision repair at 8-oxoguanine (OG):A lesions. The roles for its [4Fe-4S] cofactor in DNA repair remain enigmatic. Functional profiling of cancer-associated variants near the [4Fe-4S] cofactor reveals that most variations abrogate both retention of the cofactor and enzyme activity. Surprisingly, R241Q and N238S retained the metal cluster and bound substrate DNA tightly, but were completely inactive. We determine the crystal structure of human MUTYH bound to a transition state mimic and this shows that Arg241 and Asn238 build an H-bond network connecting the [4Fe-4S] cluster to the catalytic Asp236 that mediates base excision. The structure of the bacterial MutY variant R149Q, along with molecular dynamics simulations of the human enzyme, support a model in which the cofactor functions to position and activate the catalytic Asp. These results suggest that allosteric cross-talk between the DNA binding [4Fe-4S] cofactor and the base excision site of MUTYH regulate its DNA repair function.more » « less
-
Greening, Chris (Ed.)ABSTRACT Aerobes require dioxygen (O2) to grow; anaerobes do not. However, nearly all microbes—aerobes, anaerobes, and facultative organisms alike—express enzymes whose substrates include O2, if only for detoxification. This presents a challenge when trying to assess which organisms are aerobic from genomic data alone. This challenge can be overcome by noting that O2utilization has wide-ranging effects on microbes: aerobes typically have larger genomes encoding distinctive O2-utilizing enzymes, for example. These effects permit high-quality prediction of O2utilization from annotated genome sequences, with several models displaying ≈80% accuracy on a ternary classification task for which blind guessing is only 33% accurate. Since genome annotation is compute-intensive and relies on many assumptions, we asked if annotation-free methods also perform well. We discovered that simple and efficient models based entirely on genomic sequence content—e.g., triplets of amino acids—perform as well as intensive annotation-based classifiers, enabling rapid processing of genomes. We further show that amino acid trimers are useful because they encode information about protein composition and phylogeny. To showcase the utility of rapid prediction, we estimated the prevalence of aerobes and anaerobes in diverse natural environments cataloged in the Earth Microbiome Project. Focusing on a well-studied O2gradient in the Black Sea, we found quantitative correspondence between local chemistry (O2:sulfide concentration ratio) and the composition of microbial communities. We, therefore, suggest that statistical methods like ours might be used to estimate, or “sense,” pivotal features of the chemical environment using DNA sequencing data.IMPORTANCEWe now have access to sequence data from a wide variety of natural environments. These data document a bewildering diversity of microbes, many known only from their genomes. Physiology—an organism’s capacity to engage metabolically with its environment—may provide a more useful lens than taxonomy for understanding microbial communities. As an example of this broader principle, we developed algorithms that accurately predict microbial dioxygen utilization directly from genome sequences without annotating genes, e.g., by considering only the amino acids in protein sequences. Annotation-free algorithms enable rapid characterization of natural samples, highlighting quantitative correspondence between sequences and local O2levels in a data set from the Black Sea. This example suggests that DNA sequencing might be repurposed as a multi-pronged chemical sensor, estimating concentrations of O2and other key facets of complex natural settings.more » « less
-
Abstract We present a new class of DNA‐based nanoswitches that, upon enzymatic repair, could undergo a conformational change mechanism leading to a change in fluorescent signal. Such folding‐upon‐repair DNA nanoswitches are synthetic DNA sequences containingO6‐methyl‐guanine (O6‐MeG) nucleobases and labelled with a fluorophore/quencher optical pair. The nanoswitches are rationally designed so that only upon enzymatic demethylation of theO6‐MeG nucleobases they can form stable intramolecular Hoogsteen interactions and fold into an optically active triplex DNA structure. We have first characterized the folding mechanism induced by the enzymatic repair activity through fluorescent experiments and Molecular Dynamics simulations. We then demonstrated that the folding‐upon‐repair DNA nanoswitches are suitable and specific substrates for different methyltransferase enzymes including the human homologue (hMGMT) and they allow the screening of novel potential methyltransferase inhibitors.more » « less
An official website of the United States government

