Four quaternary hybrid halide perovskites have been synthesized in hydrohalic acid solutions under hydrothermal conditions. The structures of (CH3NH3)2AgRhX6 and (CH3NH3)2NaRhX6, (X = Cl–, Br–) consist of infinite one-dimensional chains of face-sharing metal-halide octahedra. The structure is closely related to the 2H hexagonal perovskite structure, but the space group symmetry is lowered from hexagonal P63/mmc to trigonal P3 ̅m1 by site ordering of the Rh3+ and Ag+/Na+ cations. All compositions demonstrate broad-spectrum visible light absorption with optical transitions arising from rhodium d-to-d transitions and halide-to-rhodium charge transfer transitions. The bromides show a 0.2 eV red shift in the optical transitions compared to the analogous chlorides. Crystal field splitting energies were found to be 2.6 eV and 2.4 eV for the chloride and bromide compositions, respectively. Band structure calculations for all compositions give rather flat valence and conduction bands, suggesting a zero-dimensional electronic structure. The valence bands are made up of crystal orbitals that are almost exclusively Rh 4d–Cl 3p (Br 4p) π* in character, while the conduction bands have Rh 4d–Cl 3p (Br 4p) σ* character.
more »
« less
3D Lead‐Organoselenide‐Halide Perovskites and their Mixed‐Chalcogenide and Mixed‐Halide Alloys
Abstract We incorporate Se into the 3D halide perovskite framework using the zwitterionic ligand: SeCYS (+NH3(CH2)2Se−), which occupies both the X−and A+sites in the prototypical ABX3perovskite. The new organoselenide‐halide perovskites: (SeCYS)PbX2(X=Cl, Br) expand upon the recently discovered organosulfide‐halide perovskites. Single‐crystal X‐ray diffraction and pair distribution function analysis reveal the average structures of the organoselenide‐halide perovskites, whereas the local lead coordination environments and their distributions were probed through solid‐state77Se and207Pb NMR, complemented by theoretical simulations. Density functional theory calculations illustrate that the band structures of (SeCYS)PbX2largely resemble those of their S analogs, with similar band dispersion patterns, yet with a considerable band gap decrease. Optical absorbance measurements indeed show band gaps of 2.07 and 1.86 eV for (SeCYS)PbX2with X=Cl and Br, respectively. We further demonstrate routes to alloying the halides (Cl, Br) and chalcogenides (S, Se) continuously tuning the band gap from 1.86 to 2.31 eV–straddling the ideal range for tandem solar cells or visible‐light photocatalysis. The comprehensive description of the average and local structures, and how they can fine‐tune the band gap and potential trap states, respectively, establishes the foundation for understanding this new perovskite family, which combines solid‐state and organo‐main‐group chemistry.
more »
« less
- Award ID(s):
- 2303044
- PAR ID:
- 10608487
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Angewandte Chemie International Edition
- Volume:
- 63
- Issue:
- 41
- ISSN:
- 1433-7851
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The phase stability of mixed halide perovskites plays a vital role in the performance and reliability of perovskite-based devices and systems. In this work, we incorporate the contribution of the strain energy due to the size mismatch of halideions in Gibbs free energy for the analysis of the phase stability of mixed halide perovskites. Analytical expressions of the chemical potentials of halide ions in mixed halide perovskites are derived and used to determine the critical atomic fractions of halide ions for the presence of spinodal decomposition (phase instability). The numerical analysis of CH3NH3PbIxBr3-xmixed halide perovskite reveals the important role of the mismatch strain from halide ions in controlling the phase instability of mixed halide perovskite, i.e., increasing the mismatch strain widens the range ofxfor the phase separation of mixed halide perovskites. To mitigate the phase instability associated with the strain energy from intrinsic size mismatch and/or light-induced expansion, strain and/or field engineering, such as high pressure, can be likely applied to introduce strain and/or field gradient to counterbalance the strain gradient by the mismatch strain and/or light-induced expansion.more » « less
-
null (Ed.)The past decade has witnessed tremendous advances in synthesis of metal halide perovskites and their use for a rich variety of optoelectronics applications. Metal halide perovskite has the general formula ABX 3 , where A is a monovalent cation (which can be either organic ( e.g. , CH 3 NH 3 + (MA), CH(NH 2 ) 2 + (FA)) or inorganic ( e.g. , Cs + )), B is a divalent metal cation (usually Pb 2+ ), and X is a halogen anion (Cl − , Br − , I − ). Particularly, the photoluminescence (PL) properties of metal halide perovskites have garnered much attention due to the recent rapid development of perovskite nanocrystals. The introduction of capping ligands enables the synthesis of colloidal perovskite nanocrystals which offer new insight into dimension-dependent physical properties compared to their bulk counterparts. It is notable that doping and ion substitution represent effective strategies for tailoring the optoelectronic properties ( e.g. , absorption band gap, PL emission, and quantum yield (QY)) and stabilities of perovskite nanocrystals. The doping and ion substitution processes can be performed during or after the synthesis of colloidal nanocrystals by incorporating new A′, B′, or X′ site ions into the A, B, or X sites of ABX 3 perovskites. Interestingly, both isovalent and heterovalent doping and ion substitution can be conducted on colloidal perovskite nanocrystals. In this review, the general background of perovskite nanocrystals synthesis is first introduced. The effects of A-site, B-site, and X-site ionic doping and substitution on the optoelectronic properties and stabilities of colloidal metal halide perovskite nanocrystals are then detailed. Finally, possible applications and future research directions of doped and ion-substituted colloidal perovskite nanocrystals are also discussed.more » « less
-
Abstract The interface between the hole transport layer (HTL) and perovskite in p‐i‐n perovskite solar cells (PSCs) plays a vital role in the device performance and stability. However, the impact of this interface on the vertical phase segregation of mixed halide perovskite remains insufficiently understood. This work systematically investigates the impact of chemical and electronic properties of HTL on vertical halide segregation of mixed‐halide perovskites. This work shows that incorporating a poly[bis(4‐phenyl) (2,4,6‐trimethylphenyl) amine] (PTAA)/CuIxBr1‐xbilayer as the HTL significantly suppresses light‐induced vertical phase segregation in MAPb(I0.7Br0.3)3. This work uses grazing‐incidence X‐ray diffraction (GIXRD) to capture the depth‐resolved composition change of MAPb(I0.7Br0.3)3at the interface and within the bulk under illumination. By changing the illumination direction and the electronic properties of HTL, this work elucidates the roles of charge carrier extraction and interfacial defects on vertical phase segregation. The PTAA/CuIxBr1‐xbilayer, with its synergistic passivation and efficient hole extraction ability, stabilizes the interface and bulk of the mixed halide perovskite layer and prevents phase segregation. This work underscores that synergetic passivation and efficient hole extraction pack a more powerful punch for arresting the vertical phase segregation in mixed‐halide perovskite.more » « less
-
We present a combined experimental and density functional theory study that characterizes the charge and spin density in NiX2(3,5-lutidine)4(X= Cl, Br and I). In this material, magnetic exchange interactions occur via Ni2+–halide...halide–Ni2+pathways, forming one-dimensional chains. We find evidence for weak halide...halide covalency in the iodine system, which is greatly reduced whenX= Br and is absent forX= Cl; this is consistent with the reported `switching-on' of magnetic exchange in the larger-halide cases. Our results are benchmarked against density functional theory calculations on [NiHF2(pyrazine)2]SbF6, in which the primary magnetic exchange is mediated by F–H–F bridging ligands. This comparison indicates that, despite the largely depleted charge density found at the centre of halide...halide bonds, these through-space interactions can support strong magnetic exchange gated by weak covalency and enhanced by significant electron density overlapping that of the transition metal centres.more » « less
An official website of the United States government

