This content will become publicly available on January 1, 2026
Title: Low Sensitivity Hopsets
Given a weighted graph G = (V,E,w), a (β, ε)-hopset H is an edge set such that for any s,t ∈ V, where s can reach t in G, there is a path from s to t in G ∪ H which uses at most β hops whose length is in the range [dist_G(s,t), (1+ε)dist_G(s,t)]. We break away from the traditional question that asks for a hopset H that achieves small |H| and small diameter β and instead study the sensitivity of H, a new quality measure. The sensitivity of a vertex (or edge) given a hopset H is, informally, the number of times a single hop in G ∪ H bypasses it; a bit more formally, assuming shortest paths in G are unique, it is the number of hopset edges (s,t) ∈ H such that the vertex (or edge) is contained in the unique st-path in G having length exactly dist_G(s,t). The sensitivity associated with H is then the maximum sensitivity over all vertices (or edges). The highlights of our results are: - A construction for (Õ(√n), 0)-hopsets on undirected graphs with O(log n) sensitivity, complemented with a lower bound showing that Õ(√n) is tight up to polylogarithmic factors for any construction with polylogarithmic sensitivity. - A construction for (n^o(1), ε)-hopsets on undirected graphs with n^o(1) sensitivity for any ε > 0 that is at least inverse polylogarithmic, complemented with a lower bound on the tradeoff between β, ε, and the sensitivity. - We define a notion of sensitivity for β-shortcut sets (which are the reachability analogues of hopsets) and give a construction for Õ(√n)-shortcut sets on directed graphs with O(log n) sensitivity, complemented with a lower bound showing that β = Ω̃(n^{1/3}) for any construction with polylogarithmic sensitivity. We believe hopset sensitivity is a natural measure in and of itself, and could potentially find use in a diverse range of contexts. More concretely, the notion of hopset sensitivity is also directly motivated by the Differentially Private All Sets Range Queries problem [Deng et al. WADS 23]. Our result for O(log n) sensitivity (Õ(√n), 0)-hopsets on undirected graphs immediately improves the current best-known upper bound on utility from Õ(n^{1/3}) to Õ(n^{1/4}) in the pure-DP setting, which is tight up to polylogarithmic factors. more »« less
Censor-Hillel, Keren; Even, Tomer; Vassilevska_Williams, Virginia
(, Schloss Dagstuhl – Leibniz-Zentrum für Informatik)
Bringmann, Karl; Grohe, Martin; Puppis, Gabriele; Svensson, Ola
(Ed.)
We consider the problem of approximate counting of triangles and longer fixed length cycles in directed graphs. For triangles, Tětek [ICALP'22] gave an algorithm that returns a (1±ε)-approximation in Õ(n^ω/t^{ω-2}) time, where t is the unknown number of triangles in the given n node graph and ω < 2.372 is the matrix multiplication exponent. We obtain an improved algorithm whose running time is, within polylogarithmic factors the same as that for multiplying an n× n/t matrix by an n/t × n matrix. We then extend our framework to obtain the first nontrivial (1± ε)-approximation algorithms for the number of h-cycles in a graph, for any constant h ≥ 3. Our running time is Õ(MM(n,n/t^{1/(h-2)},n)), the time to multiply n × n/(t^{1/(h-2)}) by n/(t^{1/(h-2)) × n matrices. Finally, we show that under popular fine-grained hypotheses, this running time is optimal.
Alon, Noga; Bucić, Matija; Sudakov, Benny
(, Proceedings of the American Mathematical Society)
We study the following question raised by Erdős and Hajnal in the early 90’s. Over all n n -vertex graphs G G what is the smallest possible value of m m for which any m m vertices of G G contain both a clique and an independent set of size log n \log n ? We construct examples showing that m m is at most 2 2 ( log log n ) 1 / 2 + o ( 1 ) 2^{2^{(\log \log n)^{1/2+o(1)}}} obtaining a twofold sub-polynomial improvement over the upper bound of about n \sqrt {n} coming from the natural guess, the random graph. Our (probabilistic) construction gives rise to new examples of Ramsey graphs, which while having no very large homogenous subsets contain both cliques and independent sets of size log n \log n in any small subset of vertices. This is very far from being true in random graphs. Our proofs are based on an interplay between taking lexicographic products and using randomness.
Bennett, Huck; Gajulapalli, Karthik; Golovnev, Alexander; Warton, Evelyn
(, Schloss Dagstuhl – Leibniz-Zentrum für Informatik)
Kumar, Amit; Ron-Zewi, Noga
(Ed.)
We study the Matrix Multiplication Verification Problem (MMV) where the goal is, given three n × n matrices A, B, and C as input, to decide whether AB = C. A classic randomized algorithm by Freivalds (MFCS, 1979) solves MMV in Õ(n²) time, and a longstanding challenge is to (partially) derandomize it while still running in faster than matrix multiplication time (i.e., in o(n^ω) time). To that end, we give two algorithms for MMV in the case where AB - C is sparse. Specifically, when AB - C has at most O(n^δ) non-zero entries for a constant 0 ≤ δ < 2, we give (1) a deterministic O(n^(ω-ε))-time algorithm for constant ε = ε(δ) > 0, and (2) a randomized Õ(n²)-time algorithm using δ/2 ⋅ log₂ n + O(1) random bits. The former algorithm is faster than the deterministic algorithm of Künnemann (ESA, 2018) when δ ≥ 1.056, and the latter algorithm uses fewer random bits than the algorithm of Kimbrel and Sinha (IPL, 1993), which runs in the same time and uses log₂ n + O(1) random bits (in turn fewer than Freivalds’s algorithm). Our algorithms are simple and use techniques from coding theory. Let H be a parity-check matrix of a Maximum Distance Separable (MDS) code, and let G = (I | G') be a generator matrix of a (possibly different) MDS code in systematic form. Our deterministic algorithm uses fast rectangular matrix multiplication to check whether HAB = HC and H(AB)^T = H(C^T), and our randomized algorithm samples a uniformly random row g' from G' and checks whether g'AB = g'C and g'(AB)^T = g'C^T. We additionally study the complexity of MMV. We first show that all algorithms in a natural class of deterministic linear algebraic algorithms for MMV (including ours) require Ω(n^ω) time. We also show a barrier to proving a super-quadratic running time lower bound for matrix multiplication (and hence MMV) under the Strong Exponential Time Hypothesis (SETH). Finally, we study relationships between natural variants and special cases of MMV (with respect to deterministic Õ(n²)-time reductions).
Bhore, Sujoy; Filtser, Arnold; Khodabandeh, Hadi; Toth, Csaba D.
(, 30th Annual European Symposium on Algorithms (ESA 2022))
Given a metric space ℳ = (X,δ), a weighted graph G over X is a metric t-spanner of ℳ if for every u,v ∈ X, δ(u,v) ≤ δ_G(u,v) ≤ t⋅ δ(u,v), where δ_G is the shortest path metric in G. In this paper, we construct spanners for finite sets in metric spaces in the online setting. Here, we are given a sequence of points (s₁, …, s_n), where the points are presented one at a time (i.e., after i steps, we have seen S_i = {s₁, … , s_i}). The algorithm is allowed to add edges to the spanner when a new point arrives, however, it is not allowed to remove any edge from the spanner. The goal is to maintain a t-spanner G_i for S_i for all i, while minimizing the number of edges, and their total weight. Under the L₂-norm in ℝ^d for arbitrary constant d ∈ ℕ, we present an online (1+ε)-spanner algorithm with competitive ratio O_d(ε^{-d} log n), improving the previous bound of O_d(ε^{-(d+1)}log n). Moreover, the spanner maintained by the algorithm has O_d(ε^{1-d}log ε^{-1})⋅ n edges, almost matching the (offline) optimal bound of O_d(ε^{1-d})⋅ n. In the plane, a tighter analysis of the same algorithm provides an almost quadratic improvement of the competitive ratio to O(ε^{-3/2}logε^{-1}log n), by comparing the online spanner with an instance-optimal spanner directly, bypassing the comparison to an MST (i.e., lightness). As a counterpart, we design a sequence of points that yields a Ω_d(ε^{-d}) lower bound for the competitive ratio for online (1+ε)-spanner algorithms in ℝ^d under the L₁-norm. Then we turn our attention to online spanners in general metrics. Note that, it is not possible to obtain a spanner with stretch less than 3 with a subquadratic number of edges, even in the offline setting, for general metrics. We analyze an online version of the celebrated greedy spanner algorithm, dubbed ordered greedy. With stretch factor t = (2k-1)(1+ε) for k ≥ 2 and ε ∈ (0,1), we show that it maintains a spanner with O(ε^{-1}logε^{-1})⋅ n^{1+1/k} edges and O(ε^{-1}n^{1/k}log² n) lightness for a sequence of n points in a metric space. We show that these bounds cannot be significantly improved, by introducing an instance that achieves an Ω(1/k⋅ n^{1/k}) competitive ratio on both sparsity and lightness. Furthermore, we establish the trade-off among stretch, number of edges and lightness for points in ultrametrics, showing that one can maintain a (2+ε)-spanner for ultrametrics with O(ε^{-1}logε^{-1})⋅ n edges and O(ε^{-2}) lightness.
Bhore, Sujoy; Filtser, Arnold; Khodabandeh, Hadi; Toth, Csaba D.
(, Proc. 30th Annual European Symposium on Algorithms (ESA))
Given a metric space ℳ = (X,δ), a weighted graph G over X is a metric t-spanner of ℳ if for every u,v ∈ X, δ(u,v) ≤ δ_G(u,v) ≤ t⋅ δ(u,v), where δ_G is the shortest path metric in G. In this paper, we construct spanners for finite sets in metric spaces in the online setting. Here, we are given a sequence of points (s₁, …, s_n), where the points are presented one at a time (i.e., after i steps, we have seen S_i = {s₁, … , s_i}). The algorithm is allowed to add edges to the spanner when a new point arrives, however, it is not allowed to remove any edge from the spanner. The goal is to maintain a t-spanner G_i for S_i for all i, while minimizing the number of edges, and their total weight. Under the L₂-norm in ℝ^d for arbitrary constant d ∈ ℕ, we present an online (1+ε)-spanner algorithm with competitive ratio O_d(ε^{-d} log n), improving the previous bound of O_d(ε^{-(d+1)}log n). Moreover, the spanner maintained by the algorithm has O_d(ε^{1-d}log ε^{-1})⋅ n edges, almost matching the (offline) optimal bound of O_d(ε^{1-d})⋅ n. In the plane, a tighter analysis of the same algorithm provides an almost quadratic improvement of the competitive ratio to O(ε^{-3/2}logε^{-1}log n), by comparing the online spanner with an instance-optimal spanner directly, bypassing the comparison to an MST (i.e., lightness). As a counterpart, we design a sequence of points that yields a Ω_d(ε^{-d}) lower bound for the competitive ratio for online (1+ε)-spanner algorithms in ℝ^d under the L₁-norm. Then we turn our attention to online spanners in general metrics. Note that, it is not possible to obtain a spanner with stretch less than 3 with a subquadratic number of edges, even in the offline setting, for general metrics. We analyze an online version of the celebrated greedy spanner algorithm, dubbed ordered greedy. With stretch factor t = (2k-1)(1+ε) for k ≥ 2 and ε ∈ (0,1), we show that it maintains a spanner with O(ε^{-1}logε^{-1})⋅ n^{1+1/k} edges and O(ε^{-1}n^{1/k}log² n) lightness for a sequence of n points in a metric space. We show that these bounds cannot be significantly improved, by introducing an instance that achieves an Ω(1/k⋅ n^{1/k}) competitive ratio on both sparsity and lightness. Furthermore, we establish the trade-off among stretch, number of edges and lightness for points in ultrametrics, showing that one can maintain a (2+ε)-spanner for ultrametrics with O(ε^{-1}logε^{-1})⋅ n edges and O(ε^{-2}) lightness.
@article{osti_10608494,
place = {Country unknown/Code not available},
title = {Low Sensitivity Hopsets},
url = {https://par.nsf.gov/biblio/10608494},
DOI = {10.4230/LIPIcs.ITCS.2025.13},
abstractNote = {Given a weighted graph G = (V,E,w), a (β, ε)-hopset H is an edge set such that for any s,t ∈ V, where s can reach t in G, there is a path from s to t in G ∪ H which uses at most β hops whose length is in the range [dist_G(s,t), (1+ε)dist_G(s,t)]. We break away from the traditional question that asks for a hopset H that achieves small |H| and small diameter β and instead study the sensitivity of H, a new quality measure. The sensitivity of a vertex (or edge) given a hopset H is, informally, the number of times a single hop in G ∪ H bypasses it; a bit more formally, assuming shortest paths in G are unique, it is the number of hopset edges (s,t) ∈ H such that the vertex (or edge) is contained in the unique st-path in G having length exactly dist_G(s,t). The sensitivity associated with H is then the maximum sensitivity over all vertices (or edges). The highlights of our results are: - A construction for (Õ(√n), 0)-hopsets on undirected graphs with O(log n) sensitivity, complemented with a lower bound showing that Õ(√n) is tight up to polylogarithmic factors for any construction with polylogarithmic sensitivity. - A construction for (n^o(1), ε)-hopsets on undirected graphs with n^o(1) sensitivity for any ε > 0 that is at least inverse polylogarithmic, complemented with a lower bound on the tradeoff between β, ε, and the sensitivity. - We define a notion of sensitivity for β-shortcut sets (which are the reachability analogues of hopsets) and give a construction for Õ(√n)-shortcut sets on directed graphs with O(log n) sensitivity, complemented with a lower bound showing that β = Ω̃(n^{1/3}) for any construction with polylogarithmic sensitivity. We believe hopset sensitivity is a natural measure in and of itself, and could potentially find use in a diverse range of contexts. More concretely, the notion of hopset sensitivity is also directly motivated by the Differentially Private All Sets Range Queries problem [Deng et al. WADS 23]. Our result for O(log n) sensitivity (Õ(√n), 0)-hopsets on undirected graphs immediately improves the current best-known upper bound on utility from Õ(n^{1/3}) to Õ(n^{1/4}) in the pure-DP setting, which is tight up to polylogarithmic factors.},
journal = {},
volume = {325},
publisher = {Schloss Dagstuhl – Leibniz-Zentrum für Informatik},
author = {Ashvinkumar, Vikrant and Bernstein, Aaron and Deng, Chengyuan and Gao, Jie and Wein, Nicole},
editor = {Meka, Raghu}
}
Warning: Leaving National Science Foundation Website
You are now leaving the National Science Foundation website to go to a non-government website.
Website:
NSF takes no responsibility for and exercises no control over the views expressed or the accuracy of
the information contained on this site. Also be aware that NSF's privacy policy does not apply to this site.