skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 1, 2026

Title: Stopping Set Analysis for Polar-Polar Concatenated Codes Under BP Decoding
This paper investigates properties of polar-polar concatenated codes and their potential applications. We start by reviewing previous work on stopping set analysis for conventional polar codes, which we extend in this paper to concatenated architectures. Specifically, we present a stopping set analysis for the factor graph of concatenated polar codes, deriving an upper bound on the size of the minimum stopping set. To achieve this bound, we propose new bounds on the size of the minimum stopping set for conventional polar code factor graphs. The tightness of these proposed bounds is investigated empirically and analytically. We show that, in some special cases, the exact size of the minimum stopping set can be determined with a time complexity of O(N), where N is the codeword length. The stopping set analysis motivates a novel construction method for concatenated polar codes. This method is used to design outer polar codes for two previously proposed concatenated polar code architectures: augmented polar codes and local-global polar codes. Simulation results with BP decoding demonstrate the advantage of the proposed codes over previously proposed constructions based on density evolution (DE).  more » « less
Award ID(s):
2416362 2212437
PAR ID:
10608535
Author(s) / Creator(s):
;
Publisher / Repository:
IEEE
Date Published:
Journal Name:
IEEE Transactions on Communications
ISSN:
0090-6778
Page Range / eLocation ID:
1 to 1
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. An expurgating linear function (ELF) is an outer code that disallows low-weight codewords of the inner code. ELFs can be designed either to maximize the minimum distance or to minimize the codeword error rate (CER) of the expurgated code. A list-decoding sieve can efficiently identify ELFs that maximize the minimum distance of the expurgated code. For convolutional inner codes, this paper provides analytical distance spectrum union (DSU) bounds on the CER of the concatenated code. For short codeword lengths, ELFs transform a good inner code into a great concatenated code. For a constant message size of K = 64 bits or constant codeword blocklength of N = 152 bits, an ELF can reduce the gap at CER 10−6 between the DSU and the random-coding union (RCU) bounds from over 1 dB for the inner code alone to 0.23 dB for the concatenated code. The DSU bounds can also characterize puncturing that mitigates the rate overhead of the ELF while maintaining the DSU-to-RCU gap. List Viterbi decoding guided by the ELF achieves maximum likelihood (ML) decoding of the concatenated code with a sufficiently large list size. The rate-K/(K+m) ELF outer code reduces rate and list decoding increases decoder complexity. As SNR increases, the average list size converges to 1 and average complexity is similar to Viterbi decoding on the trellis of the inner code. For rare large-magnitude noise events, which occur less often than the FER of the inner code, a deep search in the list finds the ML codeword. 
    more » « less
  2. Braverman, Mark (Ed.)
    A longstanding open problem in coding theory is to determine the best (asymptotic) rate R₂(δ) of binary codes with minimum constant (relative) distance δ. An existential lower bound was given by Gilbert and Varshamov in the 1950s. On the impossibility side, in the 1970s McEliece, Rodemich, Rumsey and Welch (MRRW) proved an upper bound by analyzing Delsarte’s linear programs. To date these results remain the best known lower and upper bounds on R₂(δ) with no improvement even for the important class of linear codes. Asymptotically, these bounds differ by an exponential factor in the blocklength. In this work, we introduce a new hierarchy of linear programs (LPs) that converges to the true size A^{Lin}₂(n,d) of an optimum linear binary code (in fact, over any finite field) of a given blocklength n and distance d. This hierarchy has several notable features: 1) It is a natural generalization of the Delsarte LPs used in the first MRRW bound. 2) It is a hierarchy of linear programs rather than semi-definite programs potentially making it more amenable to theoretical analysis. 3) It is complete in the sense that the optimum code size can be retrieved from level O(n²). 4) It provides an answer in the form of a hierarchy (in larger dimensional spaces) to the question of how to cut Delsarte’s LP polytopes to approximate the true size of linear codes. We obtain our hierarchy by generalizing the Krawtchouk polynomials and MacWilliams inequalities to a suitable "higher-order" version taking into account interactions of 𝓁 words. Our method also generalizes to translation schemes under mild assumptions. 
    more » « less
  3. Progress in designing channel codes has been driven by human ingenuity and, fittingly, has been sporadic. Polar codes, developed on the foundation of Arikan's polarization kernel, represent the latest breakthrough in coding theory and have emerged as the state-of-the-art error-correction code for short-to-medium block length regimes. In an effort to automate the invention of good channel codes, especially in this regime, we explore a novel, non-linear generalization of Polar codes, which we call DEEPPOLAR codes. DEEPPOLAR codes extend the conventional Polar coding framework by utilizing a larger kernel size and parameterizing these kernels and matched decoders through neural networks. Our results demonstrate that these data-driven codes effectively leverage the benefits of a larger kernel size, resulting in enhanced reliability when compared to both existing neural codes and conventional Polar codes. 
    more » « less
  4. In this paper, we are interested in the performance of a variable-length stop-feedback (VLSF) code with m optimal decoding times for the binary-input additive white Gaussian noise channel. We first develop tight approximations to the tail probability of length-n cumulative information density. Building on the work of Yavas et al., for a given information density threshold, we formulate the integer program of minimizing the upper bound on average blocklength over all decoding times subject to the average error probability, minimum gap and integer constraints. Eventually, minimization of locally optimal upper bounds over all thresholds yields the globally minimum upper bound and the above method is called the two-step minimization. Relaxing to allow positive real-valued decoding times activates the gap constraint. We develop gap-constrained sequential differential optimization (SDO) procedure to find the optimal, gap-constrained, real-valued decoding times. In the error regime of practical interest, Polyanskiy's scheme of stopping at zero does not help. In this region, the achievability bounds estimated by the two-step minimization and gap-constrained SDO show that Polyanskiy’s achievability bound for VLSF codes can be approached with a small number of decoding times. 
    more » « less
  5. We show that the entire class of polar codes (up to a natural necessary condition) converge to capacity at block lengths polynomial in the gap to capacity, while simultaneously achieving failure probabilities that are exponentially small in the block length (i.e., decoding fails with probability exp(-N^{Omega(1)}) for codes of length N). Previously this combination was known only for one specific family within the class of polar codes, whereas we establish this whenever the polar code exhibits a condition necessary for any polarization. Our results adapt and strengthen a local analysis of polar codes due to the authors with Nakkiran and Rudra [Proc. STOC 2018]. Their analysis related the time-local behavior of a martingale to its global convergence, and this allowed them to prove that the broad class of polar codes converge to capacity at polynomial block lengths. Their analysis easily adapts to show exponentially small failure probabilities, provided the associated martingale, the "Arikan martingale", exhibits a corresponding strong local effect. The main contribution of this work is a much stronger local analysis of the Arikan martingale. This leads to the general result claimed above. In addition to our general result, we also show, for the first time, polar codes that achieve failure probability exp(-N^{beta}) for any beta < 1 while converging to capacity at block length polynomial in the gap to capacity. Finally we also show that the "local" approach can be combined with any analysis of failure probability of an arbitrary polar code to get essentially the same failure probability while achieving block length polynomial in the gap to capacity. 
    more » « less