skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Best-practice guidance for Earth BioGenome Project sample collection and processing: progress and challenges in biodiverse reference genome creation
Abstract The Earth BioGenome Project has the extremely ambitious goal of generating, at scale, high-quality reference genomes across the entire Tree of Life. Currently in its first phase, the project is targeting family-level representatives and is progressing rapidly. Here we outline recommended standards and considerations in sample acquisition and processing for those involved in biodiverse reference genome creation. These standards and recommendations will evolve with advances in related processes. Additionally, we discuss the challenges raised by the ambitions for later phases of the project, highlighting topics related to sample collection and processing that require further development.  more » « less
Award ID(s):
2110053 1846174
PAR ID:
10608644
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Oxford
Date Published:
Journal Name:
GigaScience
Volume:
14
ISSN:
2047-217X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Sample preservation often impedes efforts to generate high-quality reference genomes or pangenomes for Earth’s more than 2 million plant and animal species due to nucleotide degradation. Here we compare the impacts of storage methods including solution type, temperature, and time on DNA quality and Oxford Nanopore long-read sequencing quality in 9 fish and 4 plant species. We show 95% ethanol largely protects against degradation for fish blood (22 °C, ≤6 weeks) and plant tissue (4 °C, ≤3 weeks). From this furthest storage timepoint, we assemble high-quality reference genomes of 3 fish and 2 plant species with contiguity (contig N50) and completeness (BUSCO) that achieve the Vertebrate Genome Project benchmarking standards. For epigenetic applications, we also report methylation frequency compared to liquid nitrogen control. The results presented here remove the necessity for cryogenic storage in many long read applications and provide a framework for future studies focused on sampling in remote locations, which may represent a large portion of the future sequencing of novel organisms. 
    more » « less
  2. RationaleBack‐side thinning of wafers is used to eliminate issues with transient sputtering when analyzing near‐surface element distributions. Precise and accurate calibrated implants are created by including a standard reference material during the implantation. Combining these methods allows accurate analysis of low‐fluence, shallow features even if matrix effects are a concern. MethodsImplanted Na (<2.0 × 1011ions/cm2, peaking <50 nm) in diamond‐like carbon (DLC) film on silicon (solar wind returned by NASA's Genesis mission) was prepared for measurement as follows. Implanted surfaces of samples were epoxied to wafers and back‐side‐thinned using physical or chemical methods. Thinned samples were then implanted with reference ions for accurate quantification of the solar wind implant. Analyses used a CAMECA IMS 7f‐GEO SIMS in depth‐profiling mode. ResultsBack‐side‐implanted reference ions reduced the need to change sample mounts or stage position and could be spatially separated from the solar wind implant even when measuring monoisotopic ions. Matrix effects in DLC were mitigated and the need to find an identical piece of DLC for a reference implant was eliminated. Accuracy was only limited by the back‐side technique itself. ConclusionsCombining back‐side depth profiling with back‐side‐implanted internal standards aides quantification of shallow mono‐ and polyisotopic implants. This technique helps mitigate matrix effects and keeps measurement conditions consistent. Depth profile acquisition times are longer, but if sample matrices are homogeneous, procedural changes can decrease measurement times. 
    more » « less
  3. A global international initiative, such as the Earth BioGenome Project (EBP), requires both agreement and coordination on standards to ensure that the collective effort generates rapid progress toward its goals. To this end, the EBP initiated five technical standards committees comprising volunteer members from the global genomics scientific community: Sample Collection and Processing, Sequencing and Assembly, Annotation, Analysis, and IT and Informatics. The current versions of the resulting standards documents are available on the EBP website, with the recognition that opportunities, technologies, and challenges may improve or change in the future, requiring flexibility for the EBP to meet its goals. Here, we describe some highlights from the proposed standards, and areas where additional challenges will need to be met. 
    more » « less
  4. ABSTRACT RationaleStable oxygen isotope measurements in silicate clays, such as smectite and kaolinite, provide crucial information for understanding Earth's climate history and environmental changes. Despite a growing interest in the oxygen isotope analysis of silicate clays and clay‐rich sediments, there lacks a consensus on the preparation and standardization of clay mineral samples. To improve the accuracy and interlaboratory comparisons of clay isotope measurements, especially those involving laser fluorination techniques, newly established kaolinite and smectite oxygen isotope standards are much needed. MethodsWe employed conventional nickel bomb fluorination combined with dual‐inlet isotope ratio mass spectrometry to establish precise δ18O and Δ′17O values for leached clay reference materials KGa‐1b and SHCa‐1, a kaolinite and a hectorite/smectite, respectively. We further measured leached KGa‐1b and SHCa‐1 pressed into pellets with a lithium fluoride as a binding agent for the laser fluorination method, allowing us to test the reproducibility between methods and utilize a standard laser chamber drift correction scheme. ResultsThe laser fluorination technique yielded highly precise and reproducible δ18O and Δ′17O measurements for the KGa‐1b and SHCa‐1, aligning with bomb values of δ18O. This confirms the method's reliability and comparability to conventional isotope measurement techniques while also stressing the importance of proper sample preparation and laser chamber drift corrections. ConclusionsThis study demonstrates that laser fluorination is an effective method for accurately measuring the stable oxygen isotope composition of silicate clays or clay‐rich sediments when corrected with known silicate clay standards. These methods offer a valuable methodology for future research and applications that will significantly improve our understanding of past climate and environmental conditions. 
    more » « less
  5. ABSTRACT Sequential thermal analysis allows for deconvoluting the refractory nature and complexity of carbon mixtures embedded in mineral matrices for subsequent offline stable carbon and radiocarbon (14C) isotope analyses. Originally developed to separate Holocene from more ancient sedimentary organic matter to improve dating of marine sediments, the Ramped Pyrolysis and Oxidation (RPO) apparatus, or informally, the “dirt burner” is now used to address pressing questions in the broad field of biogeochemistry. The growing interest in the community now necessitates improved handling and procedures for routine analyses of difficult sample types. Here we report on advances in CO2purification during sample processing, modifications to the instrumentation at the National Ocean Sciences Accelerator Mass Spectrometry (NOSAMS) facility, and introduce sodium bicarbonate procedural standards with differing natural abundance14C signatures for blank assessment. Measurements from different environmental samples are used to compare the procedure to the different generations of sequential thermal analyses. With this study, we aim to improve the standardization of the procedures and prepare this instrumentation for innovations in online stable carbon isotopes and direct AMS-interface measurements in the future. 
    more » « less