This study explored the feasibility of using fish skin bandages as a therapeutic option for third-degree skin burns. Following the California wildfires, clinical observations of animals with third-degree skin burns demonstrated increased comfort levels and reduced pain when treated with tilapia fish skin. Despite the promises of this therapy, there are few studies explaining the healing mechanisms behind the application of tilapia fish skin. In this study, mice with third-degree burns were treated with either a hydrocolloid adhesive bandage (control) (n = 16) or fish skin (n = 16) 7 days post-burn. Mice were subjected to histologic, hematologic, molecular, and gross evaluation at days 7, 16, and 28 post-burn. The fish skin offered no benefit to overall wound closure compared to hydrocolloids. Additionally, we detected no difference between fish skin and control treatments in regard to hypermetabolism or hematologic values. However, the fish skin groups exhibited 2 times more vascularization and 2 times higher expression of antimicrobial defensin peptide in comparison to controls. Proteomic analysis of the fish skin revealed the presence of antimicrobial peptides. Collectively, these data suggest that fish skin can serve as an innovative and cost-effective therapeutic alternative for burn victims to facilitate vascularization and reduce bacterial infection.
more »
« less
Effect of burn wound treatment with fish skin on mouse skin proteome
This study explored the feasibility of using fish skin bandages as a therapeutic option for third-degree skin burns. Following the California wildfires, clinical observations of animals with third-degree skin burns demonstrated increased comfort levels and reduced pain when treated with tilapia fish skin. Proteomic analysis of the fish skin revealed the presence of antimicrobial peptides. In combination with histological and other data, these results suggest that fish skin can serve as an innovative and cost-effective therapeutic alternative for burn victims to facilitate vascularization and reduce bacterial infection.
more »
« less
- Award ID(s):
- 2209383
- PAR ID:
- 10608747
- Publisher / Repository:
- Panorama Public
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Frederiksberg, Dr_Henrik_Rudolph (Ed.)Wound dressings based on natural materials, such as fish skin, represent an important strategy for the treatment of burns. Despite their utility, contamination of these natural materials with bacteria (planktonic and biofilm forms) introduces significant risks to patients under treatment. This disadvantage can be overcome by modifying the material’s surface to prevent bacterial deposition through chemical or physical interactions. In this work, functional graphenic materials (FGM) with tunable surface charges were incorporated into tilapia (Oreochromis niloticus) fish skin as a part of a strategy to control the biofilm adhesion on surfaces. The antibiofilm activity was evaluated against S. aureus and K. pneumoniae due to the biofilm-forming properties of these bacterial strains. FGM-modified tilapia skin samples possess a strong capacity to reduce biofilm formation on the tilapia fish skin with a higher antibiofilm activity against Gram-positive bacteria, compared to Gram-negative bacteria. Negatively charged FGMs were more effective than positively charged FGMs in preventing biofilm formation on the impregnated tilapia skin xenografts: negatively charged Claisen graphene achieved an 88.8% reduction in biofilm formation on the tilapia skin. Overall, this study demonstrates the utility of FGM-impregnated tilapia skins as a treatment for burn wounds due to their ability to modulate bacterial adhesion.more » « less
-
Fish-associated microorganisms are known to be affected by the environment and other external factors, such as microbial transfer between interacting partners. One of the most iconic mutualistic interactions on coral reefs is the cleaning interactions between cleaner fishes and their clients, during which direct physical contact occurs. Here, we characterized the skin bacteria of the Caribbean cleaner sharknose goby, Elacatinus evelynae, in four coral reefs of the US Virgin Islands using sequencing of the V4 region of the 16S rRNA gene. We specifically tested the relationship between gobies’ level of interaction with clients and skin microbiota diversity and composition. Our results showed differences in microbial alpha- and beta-diversity in the skin of gobies from different reef habitats and high inter-individual variation in microbiota diversity and structure. Overall, the results showed that fish-to-fish direct contact and specifically, access to a diverse clientele, influences the bacterial diversity and structure of cleaner gobies’ skin. Because of their frequent contact with clients, and therefore, high potential for microbial exchange, cleaner fish may serve as models in future studies aiming to understand the role of social microbial transfer in reef fish communities.more » « less
-
null (Ed.)A number of challenges in skin grafting for wound healing have drawn researchers to focus on skin tissue engineering as an alternative solution. The core idea of tissue engineering is to use scaffolds, cells, and/or bioactive molecules to help the skin to properly recover from injuries. Over the past decades, the field has significantly evolved, developing various strategies to accelerate and improve skin regeneration. However, there are still several concerns that should be addressed. Among these limitations, vascularization is known as a critical challenge that needs thorough consideration. Delayed wound healing of large defects results in an insufficient vascular network and ultimately ischemia. Recent advances in the field of tissue engineering paved the way to improve vascularization of skin substitutes. Broadly, these solutions can be classified into two categories as (1) use of growth factors, reactive oxygen species-inducing nanoparticles, and stem cells to promote angiogenesis, and (2) in vitro or in vivo prevascularization of skin grafts. This review summarizes the state-of-the-art approaches, their limitations, and highlights the latest advances in therapeutic vascularization strategies for skin tissue engineering.more » « less
-
Resonant frequency skin stretch uses cyclic lateral skin stretches matching the skin’s resonant frequency to create highly noticeable stimuli, signifying a new approach for wearable haptic stimulation. Four experiments were performed to explore biomechanical and perceptual aspects of resonant frequency skin stretch. In the first experiment, effective skin resonant frequencies were quantified at the forearm, shank, and foot. In the second experiment, perceived haptic stimuli were characterized for skin stretch actuations across a spectrum of frequencies. In the third experiment, perceived haptic stimuli were characterized for different actuator masses. In the fourth experiment, haptic classification ability was determined as subjects differentiated haptic stimulation cues while sitting, walking, and jogging. Results showed that subjects perceived stimulations at, above, and below the skin’s resonant frequency differently: stimulations lower than the skin resonant frequency felt like distinct impacts, stimulations at the skin resonant frequency felt like cyclic skin stretches, and stimulations higher than the skin resonant frequency felt like standard vibrations. Subjects successfully classified stimulations while sitting, walking, and jogging, perceived haptic stimuli was affected by actuator mass, and classification accuracy decreased with increasing speed, especially for stimulations at the shank. This work could facilitate more widespread use of wearable skin stretch. Potential applications include gaming, medical simulation, and surgical augmentation, and for training to reduce injury risk or improve sports performance.more » « less
An official website of the United States government
