skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Resonant Frequency Skin Stretch for Wearable Haptics
Resonant frequency skin stretch uses cyclic lateral skin stretches matching the skin’s resonant frequency to create highly noticeable stimuli, signifying a new approach for wearable haptic stimulation. Four experiments were performed to explore biomechanical and perceptual aspects of resonant frequency skin stretch. In the first experiment, effective skin resonant frequencies were quantified at the forearm, shank, and foot. In the second experiment, perceived haptic stimuli were characterized for skin stretch actuations across a spectrum of frequencies. In the third experiment, perceived haptic stimuli were characterized for different actuator masses. In the fourth experiment, haptic classification ability was determined as subjects differentiated haptic stimulation cues while sitting, walking, and jogging. Results showed that subjects perceived stimulations at, above, and below the skin’s resonant frequency differently: stimulations lower than the skin resonant frequency felt like distinct impacts, stimulations at the skin resonant frequency felt like cyclic skin stretches, and stimulations higher than the skin resonant frequency felt like standard vibrations. Subjects successfully classified stimulations while sitting, walking, and jogging, perceived haptic stimuli was affected by actuator mass, and classification accuracy decreased with increasing speed, especially for stimulations at the shank. This work could facilitate more widespread use of wearable skin stretch. Potential applications include gaming, medical simulation, and surgical augmentation, and for training to reduce injury risk or improve sports performance.  more » « less
Award ID(s):
1830163
PAR ID:
10100807
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
IEEE Transactions on Haptics
ISSN:
1939-1412
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Current wearable haptic display technology is limited by the lack of broadband tactors capable of delivering rich haptic effects across the entire perceptible frequency range. Audio speakers are often used in laboratory studies as broadband tactors, but it is difficult to attach them to skin and maintain contact during movement. Commercially-available narrowband tactors are small, low in cost and power efficient. We investigate the idea of interleaving narrowband tactile stimuli to achieve broadband effects. Twelve participants performed pairwise discrimination of two stimulus alternatives using two broadband tactors. One alternative was a broadband vibration composed of the sum of a mid- and a high-frequency vibration, delivered by a single tactor. The other alternative consisted of the mid-frequency component delivered by one tactor and the high-frequency by the other. The upper arm was chosen for stimulation because the tactors can be placed within the two-point limen of the skin. The sensitivity index results were significantly below 1.0, the criterion for discrimination threshold, thereby confirming that broadband haptic effects can be achieved by placing narrowband tactors with mid and high resonant frequencies within the skin’s spatial resolution. We provide guidelines and examples of applying our findings to the design of wearable haptic displays. 
    more » « less
  2. Brushed stimuli are perceived as pleasant when stroked lightly on the skin surface of a touch receiver at certain velocities. While the relationship between brush velocity and pleasantness has been widely replicated, we do not understand how resultant skin movements – e.g., lateral stretch, stick-slip, normal indentation – drive us to form such judgments. In a series of psychophysical experiments, this work modulates skin movements by varying stimulus stiffness and employing various treatments. The stimuli include brushes of three levels of stiffness and an ungloved human finger. The skin’s friction is modulated via non-hazardous chemicals and washing protocols, and the skin’s thickness and lateral movement are modulated by thin sheets of adhesive film. The stimuli are hand-brushed at controlled forces and velocities. Human participants report perceived pleasantness per trial using ratio scaling. The results indicate that a brush’s stiffness influenced pleasantness more than any skin treatment. Surprisingly, varying the skin’s friction did not affect pleasantness. However, the application of a thin elastic film modulated pleasantness. Such barriers, though elastic and only 40 microns thick, inhibit the skin’s tangential movement and disperse normal force. The finding that thin films modulate affective interactions has implications for wearable sensors and actuation devices. 
    more » « less
  3. Haptic devices enable communication via touch, augmenting visual and auditory displays, or by offering alternative channels of communication when vision and hearing are unavailable. Because of the different types of haptic stimuli that are perceivable by users — vibration, skin stretch, pressure and temperature, among others — devices can be designed to communicate complex information by delivering multiple types of haptic stimuli simultaneously. These multi-sensory haptic devices are often designed to be wearable and have been developed for use in a wide variety of applications, including communication, entertainment and rehabilitation. Multi-sensory haptic devices present unique challenges to designers because human perceptual acuity can vary widely depending on the wearable location on the body and/or the heterogeneity in human perceptual performance, particularly when multiple cues are presented simultaneously. Additionally, packaging haptic systems in a wearable form factor presents its own engineering challenges such as cue masking, device mounting and actuator capabilities, among others. Thus, in this Review, we discuss the state-of-the-art and specific obstacles present in the field to produce multi-sensory devices that enhance the human capacity for haptic interaction and information transmission. 
    more » « less
  4. Despite the ubiquitous presence of tactile actuators (tactors) in mobile devices, there is a continuing need for more advanced tactors that can cover the entire frequency range of human tactile perception. Broadband tactors can increase information transmission and enrich sensory experience. The engineering challenges are multifold in that the ideal tactors should exhibit an effective bandwidth of at least 300 Hz, small form factor, robustness, power efficiency and low cost. For wearable applications, there are the additional challenges of ease of mounting and maintaining adequate skin contact during body movements. We propose an approach to interleave narrowband tactile stimuli to achieve broadband effects, taking advantage of the limited spatial resolution of the skin on the torso and limbs. Three psychophysical experiments were conducted to assess the validity of this approach. Participants performed pairwise discriminations of two broadband stimuli delivered using one or two tactors. The broadband stimuli consisted of one mid-frequency and one high-frequency component delivered through one tactor by mixing the two components, or through two tactors (one component per tactor). The first two experiments revealed extraneous cues such as localization and mutual masking of mid- and high-frequency components that were subsequently eliminated in the third experiment. Results from 12 participants confirmed that performance on pairwise comparisons was below the discrimination threshold, confirming that broadband haptic effects can be achieved through narrowband tactors placed within the skin’s two-point limen. 
    more » « less
  5. null (Ed.)
    When individuals interact with the environment, sensory feedback is a critical aspect of the experience. Individuals using prosthesis often have difficulty controlling their device, partly due to a lack of sensory information. Transcutaneous nerve stimulation has the potential to elicit focal haptic sensation when controlled electrical current was delivered to a pair of electrodes in proximity to the nerve. The objective of this preliminary study was to evaluate how different elicited focal haptic sensation were altered, when multiple concurrent electrical stimuli were delivered to different portions of the median and ulnar nerve bundles. The delay between the individual stimulation during concurrent stimuli was also varied to identify if this parameter could alter the resulting sensation region. Lastly, the stability/repeatability of the perceived sensation during concurrent stimuli was determined. Our preliminary results showed that the spatial distribution of the haptic sensation was largely a direct summation/merge of the sensation regions from the individual nerve stimulation when comparing the regions to that of the concurrent double stimulation. Our results also showed that merged sensation region was not sensitive to different time delays the two concurrent stimuli. Lastly, the sensation regions remained stable and showed repeatable sensation in the hand even with 20-60 minutes between repeated stimulations. 
    more » « less