Genes that regulate hormone release are essential for maintaining metabolism and energy balance. Egr1 encodes a transcription factor that regulates hormone production and release, and a decreased in growth hormones has been reported in Egr1 knockout mice. A reduction in growth hormones has also been observed in Nestin-Cre mice, a model frequently used to study the nervous system. Currently, it is unknown how Egr1 loss or the Nestin-Cre driver disrupt pituitary gene expression. Here, we compared the growth curves and pituitary gene expression profiles of Nestin-Cre-mediated Egr1 conditional knockout (Egr1cKO) mice with those of their controls. Reduced body weight was observed in both the Nestin-Cre and Egr1cKO mice, and the loss of Egr1 had a slightly more severe impact on female mice than on male mice. RNA-seq data analyses revealed that the sex-related differences were amplified in the Nestin-Cre-mediated Egr1 conditional knockout mice. Additionally, in the male mice, the influence of Egr1cKO on pituitary gene expression may be overridden by the Nestin-Cre driver. Differentially expressed genes associated with the Nestin-Cre driver were significantly enriched for genes related to growth factor activity and binding. Altogether, our results demonstrate that Nestin-Cre and the loss of Egr1 in the neuronal cell lineage have distinct impacts on pituitary gene expression in a sex-specific manner.
more »
« less
Prediction and experimental validation of a new salinity-responsive cis-regulatory element (CRE) in tilapia
Quantitative DIA proteomics in combination with the transcription inhibitor actinomycin D was performed on the tilapia OmB cell line to identify proteins that are upregulated by transcriptional regulation during hyperosmotic stress. This analysis revealed proteins that are transcriptionally up-regulated by hyperosmolality in these cells. The promoter regions of these proteins were compared and a novel hyperosmolality-induced cis-regulatory element (CRE) and corresponding transcription factor candidate were identified. The CRE was experimentlly validated by site-directed mutagenesis in combination with reporter assays.
more »
« less
- Award ID(s):
- 2209383
- PAR ID:
- 10608754
- Publisher / Repository:
- Panorama Public
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
INTRODUCTION Genome-wide association studies (GWASs) have identified thousands of human genetic variants associated with diverse diseases and traits, and most of these variants map to noncoding loci with unknown target genes and function. Current approaches to understand which GWAS loci harbor causal variants and to map these noncoding regulators to target genes suffer from low throughput. With newer multiancestry GWASs from individuals of diverse ancestries, there is a pressing and growing need to scale experimental assays to connect GWAS variants with molecular mechanisms. Here, we combined biobank-scale GWASs, massively parallel CRISPR screens, and single-cell sequencing to discover target genes of noncoding variants for blood trait loci with systematic targeting and inhibition of noncoding GWAS loci with single-cell sequencing (STING-seq). RATIONALE Blood traits are highly polygenic, and GWASs have identified thousands of noncoding loci that map to candidate cis -regulatory elements (CREs). By combining CRE-silencing CRISPR perturbations and single-cell readouts, we targeted hundreds of GWAS loci in a single assay, revealing target genes in cis and in trans . For select CREs that regulate target genes, we performed direct variant insertion. Although silencing the CRE can identify the target gene, direct variant insertion can identify magnitude and direction of effect on gene expression for the GWAS variant. In select cases in which the target gene was a transcription factor or microRNA, we also investigated the gene-regulatory networks altered upon CRE perturbation and how these networks differ across blood cell types. RESULTS We inhibited candidate CREs from fine-mapped blood trait GWAS variants (from ~750,000 individual of diverse ancestries) in human erythroid progenitors. In total, we targeted 543 variants (254 loci) mapping to candidate CREs, generating multimodal single-cell data including transcriptome, direct CRISPR gRNA capture, and cell surface proteins. We identified target genes in cis (within 500 kb) for 134 CREs. In most cases, we found that the target gene was the closest gene and that specific enhancer-associated biochemical hallmarks (H3K27ac and accessible chromatin) are essential for CRE function. Using multiple perturbations at the same locus, we were able to distinguished between causal variants from noncausal variants in linkage disequilibrium. For a subset of validated CREs, we also inserted specific GWAS variants using base-editing STING-seq (beeSTING-seq) and quantified the effect size and direction of GWAS variants on gene expression. Given our transcriptome-wide data, we examined dosage effects in cis and trans in cases in which the cis target is a transcription factor or microRNA. We found that trans target genes are also enriched for GWAS loci, and identified gene clusters within trans gene networks with distinct biological functions and expression patterns in primary human blood cells. CONCLUSION In this work, we investigated noncoding GWAS variants at scale, identifying target genes in single cells. These methods can help to address the variant-to-function challenges that are a barrier for translation of GWAS findings (e.g., drug targets for diseases with a genetic basis) and greatly expand our ability to understand mechanisms underlying GWAS loci. Identifying causal variants and their target genes with STING-seq. Uncovering causal variants and their target genes or function are a major challenge for GWASs. STING-seq combines perturbation of noncoding loci with multimodal single-cell sequencing to profile hundreds of GWAS loci in parallel. This approach can identify target genes in cis and trans , measure dosage effects, and decipher gene-regulatory networks.more » « less
-
Background: Carbapenem-resistant Enterobacteriaceae (CRE) are a global threat. Here, we describe the clinical and molecular characteristics of Centers for Disease Control and Prevention (CDC)-defined CRE in the US. Methods: The second Consortium on Resistance Against Carbapenems in Klebsiella and other Enterobacteriaceae (CRACKLE-2, ClinicalTrials.gov: NCT03646227) is a prospective, multicenter, cohort study. Patients hospitalized in 49 US hospitals, with clinical cultures positive for CDC-defined CRE between 30 April 2016 and 31 August 2017 were included. Primary outcome was desirability of outcome ranking (DOOR) at 30 days. Clinical data and bacteria were collected, and whole genome sequencing (WGS) was performed. Findings: 1,040 patients with unique isolates were included; 449 (43%) with infection and 591 (57%) with colonization. CDC-defined CRE admission rate was 57 CDC-defined CRE admissions/100,000 admissions (95% CI: 45–71). Three subsets of CDC-defined CRE were identified: carbapenemase-producing Enterobacteriaceae (618/1,040, 59%); non-carbapenemase-producing CRE (194/1,040, 19%); and unconfirmed CRE (228/1,040, 22%; initially reported as CRE, but susceptible to carbapenems in two central laboratories). Klebsiella pneumoniae carbapenemase (KPC)-producing clonal group 258 K. pneumoniae was the most common carbapenemase-producing Enterobacteriaceae. In 449 patients with CDC-defined CRE infections, DOOR outcomes were not significantly different in patients with carbapenemase-producing Enterobacteriaceae, non-carbapenemase-producing CRE, and unconfirmed CRE. At 30 days 107/449 (24%, 95% CI 20–28%) patients had died. Interpretation: Among patients with CDC-defined CRE, similar outcomes were observed among three subgroups, including the novel unconfirmed CRE group. CDC-defined CRE represent diverse bacteria, whose spread may not respond to interventions directed to carbapenemase-producing Enterobacteriaceae.more » « less
-
Engineered endosymbionts that alter mammalian cell surface marker, cytokine and chemokine expressionAbstract Developing modular tools that direct mammalian cell function and activity through controlled delivery of essential regulators would improve methods of guiding tissue regeneration, enhancing cellular-based therapeutics and modulating immune responses. To address this challenge, Bacillus subtilis was developed as a chassis organism for engineered endosymbionts (EES) that escape phagosome destruction, reside in the cytoplasm of mammalian cells, and secrete proteins that are transported to the nucleus to impact host cell response and function. Two synthetic operons encoding either the mammalian transcription factors Stat-1 and Klf6 or Klf4 and Gata-3 were recombined into the genome of B. subtilis expressing listeriolysin O (LLO) from Listeria monocytogenes and expressed from regulated promoters. Controlled expression of the mammalian proteins from B. subtilis LLO in the cytoplasm of J774A.1 macrophage/monocyte cells altered surface marker, cytokine and chemokine expression. Modulation of host cell fates displayed some expected patterns towards anti- or pro-inflammatory phenotypes by each of the distinct transcription factor pairs with further demonstration of complex regulation caused by a combination of the EES interaction and transcription factors. Expressing mammalian transcription factors from engineered intracellular B. subtilis as engineered endosymbionts comprises a new tool for directing host cell gene expression for therapeutic and research purposes.more » « less
-
Abstract. Clouds warm the surface in the longwave (LW), and this warming effect can be quantified through the surface LW cloud radiativeeffect (CRE). The global surface LW CRE has been estimated over more than2 decades using space-based radiometers (2000–2021) and over the 5-year period ending in 2011 using the combination of radar, lidar and space-basedradiometers. Previous work comparing these two types of retrievals has shown that the radiometer-based cloud amount has some bias over icy surfaces. Here we propose new estimates of the global surface LW CRE from space-based lidarobservations over the 2008–2020 time period. We show from 1D atmosphericcolumn radiative transfer calculations that surface LW CRE linearly decreases with increasing cloud altitude. These computations allow us toestablish simple parameterizations between surface LW CRE and five cloud properties that are well observed by the Cloud-Aerosol Lidar and InfraredPathfinder Satellite Observations (CALIPSO) space-based lidar: opaque cloud cover and altitude and thin cloud cover, altitude, and emissivity. We evaluate this new surface LWCRE–LIDAR product by comparing it to existingsatellite-derived products globally on instantaneous collocated data atfootprint scale and on global averages as well as to ground-based observations at specific locations. This evaluation shows good correlationsbetween this new product and other datasets. Our estimate appears to be animprovement over others as it appropriately captures the annual variabilityof the surface LW CRE over bright polar surfaces and it provides a datasetmore than 13 years long.more » « less
An official website of the United States government
