We introduce a theory of stratifications of noncommutative stacks (i.e., presentable stable -categories), and we prove a reconstruction theorem that expresses them in terms of their strata and gluing data. This reconstruction theorem is compatible with symmetric monoidal structures, and with more general operadic structures such as -monoidal structures. We also provide a suite of fundamental operations for constructing new stratifications from old ones: restriction, pullback, quotient, pushforward, and refinement. Moreover, we establish a dual form of reconstruction; this is closely related to Verdier duality and reflection functors, and gives a categorification of Möbius inversion. Our main application is to equivariant stable homotopy theory: for any compact Lie group , we give a symmetric monoidal stratification of genuine -spectra. In the case that is finite, this expresses genuine -spectra in terms of their geometric fixedpoints (as homotopy-equivariant spectra) and gluing data therebetween (which are given by proper Tate constructions). We also prove an adelic reconstruction theorem; this applies not just to ordinary schemes but in the more general context of tensor-triangular geometry, where we obtain a symmetric monoidal stratification over the Balmer spectrum. We discuss the particular example of chromatic homotopy theory.
more »
« less
Chromatic fixed point theory and the Balmer spectrum for extraspecial 2-groups
abstract: In the early 1940s, P. A. Smith showed that if a finite $$p$$-group $$G$$ acts on a finite dimensional complex $$X$$ that is mod $$p$$ acyclic, then its space of fixed points, $X^G$, will also be mod $$p$$ acyclic. In their recent study of the Balmer spectrum of equivariant stable homotopy theory, Balmer and Sanders were led to study a question that can be shown to be equivalent to the following: if a $$G$$-space $$X$$ is a equivariant homotopy retract of the $$p$$-localization of a based finite $$G$$-C.W. complex, given $H
more »
« less
- Award ID(s):
- 1839968
- PAR ID:
- 10608822
- Publisher / Repository:
- AJM
- Date Published:
- Journal Name:
- American Journal of Mathematics
- Volume:
- 146
- Issue:
- 3
- ISSN:
- 1080-6377
- Page Range / eLocation ID:
- 769 to 812
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Working at the prime 2 and chromatic height 2, we construct a finite resolution of the homotopy fixed points of MoravaE-theory with respect to the subgroup$$\mathbb {G}_2^1$$ of the Morava stabilizer group. This is an upgrade of the finite resolution of the homotopy fixed points ofE-theory with respect to the subgroup$$\mathbb {S}_2^1$$ constructed in work of Goerss–Henn–Mahowald–Rezk, Beaudry and Bobkova–Goerss.more » « less
-
In previous work [7], the authors constructed and studied a lift of the Galois correspondence to stable homotopy categories. In particular, if L/k is a finite Galois extension of fields with Galois group G, there is a functor c∗L/k : SHG → SHk from the G-equivariant stable homotopy category to the stable motivic homotopy category over k such that c∗L/k(G/H+) = Spec(LH)+. The main theorem of [7] says that when k is a real closed field and L = k[i], the restriction of c∗L/k to the η-complete subcategory is full and faithful. Here we “uncomplete” this theorem so that it applies to c∗L/k itself. Our main tools are Bachmann’s theorem on the (2,η)- periodic stable motivic homotopy category and an isomorphism range for the map πRS → πC2 S induced by C2-equivariant Betti realization.more » « less
-
We show a number of Toda brackets in the homotopy of the motivic bordism spectrum MGL and of the Real bordism spectrum MUR. These brackets are "red-shifting" in the sense that while the terms in the bracket will be of some chromatic height n, the bracket itself will be of chromatic height (n+1). Using these, we deduce a family of exotic multiplications in the π_{**}MGL-module structure of the motivic Morava K-theories, including non-trivial multiplications by 2. These in turn imply the analogous family of exotic multiplications in the π_{\star}MUR-module structure on the Real Morava K-theories.more » « less
-
The primary goal of this paper is to study Spanier–Whitehead duality in the K(n)-local category. One of the key players in the K(n)-local category is the Lubin–Tate spectrum 𝐸𝑛, whose homotopy groups classify deformations of a formal group law of height n, in the implicit characteristic p. It is known that 𝐸𝑛 is self-dual up to a shift; however, that does not fully take into account the action of the automorphism group 𝔾𝑛 of the formal group in question. In this paper we find that the 𝔾𝑛-equivariant dual of 𝐸𝑛 is in fact 𝐸𝑛 twisted by a sphere with a non-trivial (when 𝑛>1) action by 𝔾𝑛. This sphere is a dualizing module for the group 𝔾𝑛, and we construct and study such an object 𝐼𝒢 for any compact p-adic analytic group 𝒢. If we restrict the action of 𝒢 on 𝐼𝒢 to certain type of small subgroups, we identify 𝐼𝒢 with a specific representation sphere coming from the Lie algebra of 𝒢. This is done by a classification of p-complete sphere spectra with an action by an elementary abelian p-group in terms of characteristic classes, and then a specific comparison of the characteristic classes in question. The setup makes the theory quite accessible for computations, as we demonstrate in the later sections of this paper, determining the K(n)-local Spanier–Whitehead duals of 𝐸ℎ𝐻𝑛 for select choices of p and n and finite subgroups H of 𝔾𝑛.more » « less
An official website of the United States government

