We define the Chow t-structure on the ∞-category of motivic spectra SH(k) over an arbitrary base field k. We identify the heart of this t-structure SH(k)c♡ when the exponential characteristic of k is inverted. Restricting to the cellular subcategory, we identify the Chow heart SH(k)cell,c♡ as the category of even graded MU2∗MU-comodules. Furthermore, we show that the ∞-category of modules over the Chow truncated sphere spectrum 1c=0 is algebraic. Our results generalize the ones in Gheorghe–Wang–Xu in three aspects: to integral results; to all base fields other than just C; to the entire ∞-category of motivic spectra SH(k), rather than a subcategory containing only certain cellular objects. We also discuss a strategy for computing motivic stable homotopy groups of (p-completed) spheres over an arbitrary base field k using the Postnikov–Whitehead tower associated to the Chow t-structure and the motivic Adams spectral sequences over k.
more »
« less
The stable Galois correspondence for real closed fields
In previous work [7], the authors constructed and studied a lift of the Galois correspondence to stable homotopy categories. In particular, if L/k is a finite Galois extension of fields with Galois group G, there is a functor c∗L/k : SHG → SHk from the G-equivariant stable homotopy category to the stable motivic homotopy category over k such that c∗L/k(G/H+) = Spec(LH)+. The main theorem of [7] says that when k is a real closed field and L = k[i], the restriction of c∗L/k to the η-complete subcategory is full and faithful. Here we “uncomplete” this theorem so that it applies to c∗L/k itself. Our main tools are Bachmann’s theorem on the (2,η)- periodic stable motivic homotopy category and an isomorphism range for the map πRS → πC2 S induced by C2-equivariant Betti realization.
more »
« less
- Award ID(s):
- 1709302
- PAR ID:
- 10067698
- Date Published:
- Journal Name:
- Contemporary mathematics - American Mathematical Society
- Volume:
- 707
- ISSN:
- 0271-4132
- Page Range / eLocation ID:
- 1-9
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Using techniques in motivic homotopy theory, especially the theorem of Gheorghe, the second and the third author on the isomorphism between motivic Adams spectral sequence for $$C\tau $$ C τ and the algebraic Novikov spectral sequence for $$BP_{*}$$ B P ∗ , we compute the classical and motivic stable homotopy groups of spheres from dimension 0 to 90, except for some carefully enumerated uncertainties.more » « less
-
Abstract Moss’ theorem, which relates Massey products in the$$E_r$$ -page of the classical Adams spectral sequence to Toda brackets of homotopy groups, is one of the main tools for calculating Adams differentials. Working in an arbitrary symmetric monoidal stable simplicial model category, we prove a general version of Moss’ theorem which applies to spectral sequences that arise from filtrations compatible with the monoidal structure. This involves the study of Massey products and Toda brackets in a non-strictly associative context. The theorem has broad applications, e.g., to the computation of the motivic slice spectral sequence and other colocalization towers.more » « less
-
Greenlees, John (Ed.)Let G be a finite group. We give Quillen equivalent models for the category of G–spectra as categories of spectrally enriched functors from explicitly described domain categories to nonequivariant spectra. Our preferred model is based on equivariant infinite loop space theory applied to elementary categorical data. It recasts equivariant stable homotopy theory in terms of point–set-level categories of G–spans and nonequivariant spectra. We also give a more topologically grounded model based on equivariant Atiyah duality.more » « less
An official website of the United States government

