skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Leakage-resilient $$\textsf {IBE} $$/$$\textsf {ABE} $$  with optimal leakage rates from lattices
Award ID(s):
2402031
PAR ID:
10608863
Author(s) / Creator(s):
; ;
Publisher / Repository:
Springer
Date Published:
Journal Name:
Designs, Codes and Cryptography
Volume:
92
Issue:
6
ISSN:
0925-1022
Page Range / eLocation ID:
1541 to 1597
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper introduces the concept of leakage-robust Bayesian persuasion. Situated between public Bayesian persuasion and private Bayesian persuasion, leakage-robust persuasion considers a setting where one or more signals privately communicated by a sender to the receivers may be leaked. We study the design of leakage-robust Bayesian persuasion schemes and quantify the price of robustness using two formalisms: - The first notion, k-worst-case persuasiveness, requires a signaling scheme to remain persuasive as long as each receiver observes no more than k leaked signals from other receivers. We quantify the Price of Robust Persuasiveness (PoRPk)— i.e., the gap in sender's utility as compared to the optimal private persuasion scheme—as Θ(min{2k,n}) for supermodular sender utilities and Θ(k) for submodular or XOS sender utilities, where n is the number of receivers. This result also establishes that in some instances, Θ(log k) leakages are sufficient for the utility of the optimal leakage-robust persuasion to degenerate to that of public persuasion. - The second notion, expected downstream utility robustness, relaxes the persuasiveness requirement and instead considers the impact on sender's utility resulting from receivers best responding to their observations. By quantifying the Price of Robust Downstream Utility (PoRU) as the gap between the sender's expected utility over the randomness in the leakage pattern as compared to private persuasion, our results show that, over several natural and structured distributions of leakage patterns, PoRU improves PoRP to Θ(k) or even Θ(1), where k is the maximum number of leaked signals observable to each receiver across leakage patterns in the distribution. En route to these results, we show that subsampling and masking serve as general-purpose algorithmic paradigms for transforming any private persuasion signaling scheme to one that is leakage-robust, with minmax optimal loss in sender's utility. A full version of this paper can be found at https://arxiv.org/abs/2411.16624. 
    more » « less