Baffin Bay exports Arctic Water to the North Atlantic while receiving northward flowing Atlantic Water. Warm Atlantic Water has impacted the retreat of tidewater glaciers draining the Greenland Ice Sheet. Periods of enhanced Atlantic Water transport into Baffin Bay have been observed, but the oceanic processes are still not fully explained. At the end of 2010 the net transport at Davis Strait, the southern gateway to Baffin Bay, reversed from southward to northward for a month, leading to significant northward oceanic heat transport into Baffin Bay. This was associated with an extreme high in the Greenland Blocking Index and a stormtrack path that shifted away from Baffin Bay. Thus fewer cyclones in the Irminger Sea resulted in less frequent northerly winds along the western coast of Greenland, allowing anomalous northward penetration of warm waters, reversing the volume and heat transport at Davis Strait. 
                        more » 
                        « less   
                    This content will become publicly available on November 1, 2025
                            
                            Arctic benthos in the Anthropocene: Distribution and drivers of epifauna in West Greenland
                        
                    
    
            Albeit remote, Arctic benthic ecosystems are impacted by fisheries and climate change. Yet, anthropogenic impacts are poorly understood, as benthic ecosystems and their drivers have not been mapped over large areas. We disentangle spatial patterns and drivers of benthic epifauna (animals living on the seabed surface) in West Greenland, by integrating an extensive beam-trawl dataset (326 stations, 59–75°N, 30–1400 m water depth) with environmental data. We find high variability at different spatial scales: (1) Epifauna biomass decreases with increasing latitude, sea-ice cover and water depth, related to food limitation. (2) In Greenland, the Labrador Sea in the south shows higher epifauna taxon richness compared to Baffin Bay in the north. Τhe interjacent Davis Strait forms a permeable boundary for epifauna dispersal and a mixing zone for Arctic and Atlantic taxa, featuring regional biodiversity hotspots. (3) The Labrador Sea and Davis Strait provide suitable habitats for filter-feeding epifauna communities of high biomass e.g., sponges on the steep continental slope and sea cucumbers on shallow banks. In Baffin Bay, the deeper continental shelf, more gentle continental slope, lower current speed and lower phytoplankton biomass promote low-biomass epifauna communities, predominated by sea stars, anemones, or shrimp. (4) Bottom trawling reduces epifauna biomass and taxon richness throughout the study area, where sessile filter feeders are particularly vulnerable. Climate change with diminished sea ice cover in Baffin Bay may amplify food availability to epifauna, thereby increasing their biomass. While more species might expand northward due to the general permeability of Davis Strait, an extensive colonization of Baffin Bay by high-biomass filter-feeding epifauna remains unlikely, given the lack of suitable habitats. The pronounced vulnerability of diverse and biomass-rich epifauna communities to bottom trawling emphasizes the necessity for an informed and sustainable ecosystem-based management in the face of rapid climate change 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2335928
- PAR ID:
- 10608917
- Editor(s):
- Blasco, Julian
- Publisher / Repository:
- Elsevier Science of The Total Environment
- Date Published:
- Journal Name:
- Science of The Total Environment
- Volume:
- 951
- Issue:
- C
- ISSN:
- 0048-9697
- Page Range / eLocation ID:
- 175001
- Subject(s) / Keyword(s):
- Bottom trawling Biomass Biodiversity Biogeography Spatial heterogeneity Sea ice
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Three dominant characteristics and underlying dynamics of the seasonal cycle in Baffin Bay are discussed. The study is based on a regional, high‐resolution coupled sea ice‐ocean numerical model that complements our understanding drawn from observations. Subject to forcing from the atmosphere, sea ice, Greenland, and other ocean basins, the ocean circulation exhibits complex seasonal variations that influence Arctic freshwater storage and export. The basin‐scale barotropic circulation is generally stronger (weaker) in summer (winter). The interior recirculation (∼2 Sv) is primarily driven by oscillating along‐topography surface stress. The volume transport along the Baffin Island coast is also influenced by Arctic inflows (∼0.6 Sv) via Smith Sound and Lancaster Sound with maximum (minimum) in June‐August (October‐December). In addition to the barotropic variation, the Baffin Island Current also has changing vertical structure with the upper‐ocean baroclinicity weakened in winter‐spring. It is due to a cross‐shelf circulation associated with spatially variable ice‐ocean stresses that flattens isopycnals. Greenland runoff and sea ice processes dominate buoyancy forcing to Baffin Bay. Opposite to the runoff that freshens the west Greenland shelf, stronger salinification by ice formation compared to freshening by ice melt enables a net densification in the interior of Baffin Bay. Net sea ice formation in the past 30 years contributes to ∼25% of sea ice export via Davis Strait. The seasonal variability in baroclinicity and water mass transformation changes in recent decades based on the simulation.more » « less
- 
            There is limited information about the biology and seasonal distribution of bearded seals (Erignathus barbatus) in Greenland. The species is highly ice-associated and depends on sea ice for hauling out and giving birth, making it vulnerable to climate change. We investigated the seasonality and distribution of bearded seal vocalizations at seven different locations across southern Baffin Bay and Davis Strait, West Greenland. Aural M2 and HARUphone recorders were deployed on the sea bottom during 2006–2007 and 2011–2013. Recordings were analyzed for presence/absence of bearded seal calls relative to location (including distance to shore and depth), mean sea ice concentration and diel patterns. Calling occurred between November and late June with most intense calling during the mating season at all sites. There was a clear effect of depth and distance to shore on the number of detections, and the Greenland shelf (< 300 m) appeared to be the preferred habitat for bearded seals during the mating season. These results suggest that bearded seals may retreat with the receding sea ice to Canada during summer or possibly spend the summer along the West Greenland coast. It is also possible that, due to seasonal changes in bearded seal vocal behavior, animals may have been present in our study area in summer, but silent. The number of detections was affected by the timing of sea ice formation but not sea ice concentration. Diel patterns were consistent with patterns found in other parts of the Arctic, with a peak during early morning (0400 local) and a minimum during late afternoon (1600 local). While vocalization studies have been conducted on bearded seals in Norwegian, Canadian, northwest Greenland, and Alaskan territories, this study fills the gap between these areas.more » « less
- 
            Spatial and temporal trends of remotely sensed sea-ice cover, sea surface temperatures, chlorophyll-a concentration and primary production in the Baffin Bay, Davis Strait and Labrador Sea were analyzed for the 1998–2017 period. We found spatial variability in the trends of these cryospheric, biologic and oceanographic phenomena. For example, in the northern Baffin Bay, we observed decreases in annual sea-ice persistence, yet increases along the Labrador Sea-ice edge during winter, with the latter having significant correlations with broader atmospheric patterns. In general, we observed increases in summer sea surface temperatures across the study region, except a small area of cooling along the southern Greenlandic coast. We also found significant negative trends in April chlorophyll-a and primary production followed by significant positive trends for both biological phenomena in May, owing to anomalously high values in 2014 and 2015. Notably, we found a significant positive correlation between days of monthly sea ice presence in April with May primary production quantities. Finally, we found a significant positive trend in total annual primary production over the study period. This novel finding suggests an important relationship between the timing of breakup along the sea-ice edge and peaks in biological production.more » « less
- 
            The offshore transport of Greenland coastal waters influenced by freshwater input from ice sheet melting during summer plays an important role in ocean circulation and biological processes in the Labrador Sea. Many previous studies over the last decade have investigated shelfbreak transport processes in the region, primarily using ocean model simulations. Here, we use 27 years of surface geostrophic velocity observations from satellite altimetry, modified to include Ekman dynamics based on atmospheric reanalysis, and virtual particle releases to investigate seasonal and interannual variability in transport of coastal water in the Labrador Sea. Two sets of tracking experiments were pursued, one using geostrophic velocities only, and another using total velocities including the wind effect. Our analysis revealed substantial seasonal variability, even when only geostrophic velocities were considered. Water from coastal southwest Greenland is generally transported northward into Baffin Bay, although westward transport off the west Greenland shelf increases in fall and winter due to winds. Westward offshore transport is increased for water from southeast Greenland so that, in some years, water originating near the east Greenland coast during summer can be transported into the central Labrador Sea and the convection region. When wind forcing is considered, long-term trends suggest decreasing transport of Greenland coastal water during the melting season toward Baffin Bay, and increasing transport into the interior of the Labrador Sea for water originating from southeast Greenland during summer, where it could potentially influence water column stability. Future studies using higher-resolution velocity observations are needed to capture the role of submesoscale variability in transport pathways in the Labrador Sea.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
