skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 1, 2026

Title: Transport and localization of microfibers around periodically and randomly placed circular obstacles
Transport and migration of elongated, deformable micrometer-sized particles around circular obstacles is investigated. This study is specifically motivated by the need to understand the movement and environmental impact of microplastic fibers (microfibers), particularly as contaminants in groundwater resources. Through microscale modeling, we examine how deformation, motion, and localization of microfibers are affected by medium morphology and local flow inhomogeneities. Extensive numerical simulations are performed to study the complex fluid–solid interactions taking place and to reveal the connection between microfiber transport dynamics and the arrangement of periodic and random obstacles. The trajectories of microfibers, as well as hotspots of their accumulation within both periodic and random structured media, are studied. We show that a random structured medium gives rise to anomalous transport features, such as breakthrough long tailing. A generalized probabilistic framework based on continuous time random walk is utilized to describe the upscaled transport model and capture the memory effects as well as the non-Fickian transport features. The upscaled model parameters, including effective velocity, dispersion coefficients, and transition time distributions, are extracted from direct numerical simulations.  more » « less
Award ID(s):
2414921 2042683
PAR ID:
10608942
Author(s) / Creator(s):
; ;
Publisher / Repository:
AIP
Date Published:
Journal Name:
Physics of Fluids
Volume:
37
Issue:
6
ISSN:
1070-6631
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Pollutant transport in discrete fracture networks (DFNs) exhibits complex dynamics that challenge reliable model predictions, even with detailed fracture data. To address this issue, this study derives an upscaled integral‐differential equation to predict transient anomalous diffusion in two‐dimensional (2D) DFNs. The model includes both transmissive and dead‐end fractures (DEFs), where stagnant water zones in DEFs cause non‐uniform flow and transient sub‐diffusive transport, as shown by both literature and DFN flow and transport simulations using COMSOL. The upscaled model's main parameters are quantitatively linked to fracture properties, especially the probability density function of DEF lengths. Numerical experiments show the model's accuracy in predicting the full‐term evolution of conservative tracers in 2D DFNs with power‐law distributed fracture lengths and two orientation sets. Field applications indicate that while model parameters for transient sub‐diffusion can be predicted from observed DFN distributions, predicting parameters controlling solute displacement in transmissive fractures requires additional field work, such as tracer tests. Parameter sensitivity analysis further correlates late‐time solute transport dynamics with fracture properties, such as fracture density and average length. Potential extensions of the upscaled model are also discussed. This study, therefore, proves that transient anomalous transport in 2D DFNs with DEFs can be at least partially predicted, offering an initial step toward improving model predictions for pollutant transport in real‐world fractured aquifer systems. 
    more » « less
  2. null (Ed.)
    In this paper, we consider an important problem for modeling complex coupled phenomena in porous media at multiple scales. In particular, we consider flow and transport in the void space between the pores when the pore space is altered by new solid obstructions formed by microbial growth or reactive transport, and we are mostly interested in pore-coating and pore-filling type obstructions, observed in applications to biofilm in porous media and hydrate crystal formation, respectively. We consider the impact of these obstructions on the macroscopic properties of the porous medium, such as porosity, permeability and tortuosity, for which we build an experimental probability distribution with reduced models, which involves three steps: (1) generation of independent realizations of obstructions, followed by, (2) flow and transport simulations at pore-scale, and (3) upscaling. For the first step, we consider three approaches: (1A) direct numerical simulations (DNS) of the PDE model of the actual physical process called BN which forms the obstructions, and two non-DNS methods, which we call (1B) CLPS and (1C) LP. LP is a lattice Ising-type model, and CLPS is a constrained version of an Allen–Cahn model for phase separation with a localization term. Both LP and CLPS are model approximations of BN, and they seek local minima of some nonconvex energy functional, which provide plausible realizations of the obstructed geometry and are tuned heuristically to deliver either pore-coating or pore-filling obstructions. Our methods work with rock-void geometries obtained by imaging, but bypass the need for imaging in real-time, are fairly inexpensive, and can be tailored to other applications. The reduced models LP and CLPS are less computationally expensive than DNS, and can be tuned to the desired fidelity of the probability distributions of upscaled quantities. 
    more » « less
  3. Abstract Large discrepancies between well-mixed reaction rates and effective reactions rates estimated under fluid flow conditions have been a major issue for predicting reactive transport in porous media systems. In this study, we introduce a framework that accurately predicts effective reaction rates directly from pore structural features by combining 3D pore-scale numerical simulations with machine learning (ML). We first perform pore-scale reactive transport simulations with fluid–solid reactions in hundreds of porous media and calculate effective reaction rates from pore-scale concentration fields. We then train a Random Forests model with 11 pore structural features and effective reaction rates to quantify the importance of structural features in determining effective reaction rates. Based on the importance information, we train artificial neural networks with varying number of features and demonstrate that effective reaction rates can be accurately predicted with only three pore structural features, which are specific surface, pore sphericity, and coordination number. Finally, global sensitivity analyses using the ML model elucidates how the three structural features affect effective reaction rates. The proposed framework enables accurate predictions of effective reaction rates directly from a few measurable pore structural features, and the framework is readily applicable to a wide range of applications involving porous media flows. 
    more » « less
  4. null (Ed.)
    The focus of this paper is a numerical simulation study of the flow dynamics in a periodic porous medium to analyse the physics of a symmetry-breaking phenomenon, which causes a deviation in the direction of the macroscale flow from that of the applied pressure gradient. The phenomenon is prominent in the range of porosity from 0.43 to 0.72 for circular solid obstacles. It is the result of the flow instabilities formed when the surface forces on the solid obstacles compete with the inertial force of the fluid flow in the turbulent regime. We report the origin and mechanism of the symmetry-breaking phenomenon in periodic porous media. Large-eddy simulation (LES) is used to simulate turbulent flow in a homogeneous porous medium consisting of a periodic, square lattice arrangement of cylindrical solid obstacles. Direct numerical simulation is used to simulate the transient stages during symmetry breakdown and also to validate the LES method. Quantitative and qualitative observations are made from the following approaches: (1) macroscale momentum budget and (2) two- and three-dimensional flow visualization. The phenomenon draws its roots from the amplification of a flow instability that emerges from the vortex shedding process. The symmetry-breaking phenomenon is a pitchfork bifurcation that can exhibit multiple modes depending on the local vortex shedding process. The phenomenon is observed to be sensitive to the porosity, solid obstacle shape and Reynolds number. It is a source of macroscale turbulence anisotropy in porous media for symmetric solid-obstacle geometries. In the macroscale, the principal axis of the Reynolds stress tensor is not aligned with any of the geometric axes of symmetry, nor with the direction of flow. Thus, symmetry breaking in porous media involves unresolved flow physics that should be taken into consideration while modelling flow inhomogeneity in the macroscale. 
    more » « less
  5. These files contain data supporting all results reported in Lloret et al. "A robust numerical method for the generation and propagation of periodic finite-amplitude internal waves in natural waters using high-accuracy simulations". In Lloret et al. we found: The design and implementation of boundary conditions for the robust generation and simulation of periodic finite-amplitude internal waves is examined in a quasi two-layer continuous stratification using a spectralelement-method-based incompressible flow solver. The commonly used Eulerian approach develops spurious, and potentially catastrophic small-scale numerical features near the wave-generating boundary in a non-linear stratification when the parameter A/(δc) is sufficiently larger than unity; A and δ are measures of the maximum wave-induced vertical velocity and pycnocline thickness, respectively, and c is the linear wave propagation speed. To this end, an Euler–Lagrange approach is developed and implemented to generate robust high-amplitude periodic deep-water internal waves. Central to this approach is to take into account the wave- induced (isopycnal) displacement of the pycnocline in both the vertical and (effectively) upstream directions. With amplitudes not restricted by the limits of linear theory, the Euler–Lagrange-generated waves maintain their structural integrity as they propagate away from the source. The advantages of the high-accuracy numerical method, whose minimal numerical dissipation cannot damp the above near-source spurious numerical features of the purely Eulerian case, can still be preserved and leveraged further along the wave propagation path through the robust reproduction of the non-linear adjustments of the waveform. The near- and far-source robustness of the optimized Euler–Lagrange approach is demonstrated for finite-amplitude waves in a sharp quasi two- layer continuous stratification representative of seasonally stratified lakes. The findings of this study provide an enabling framework for two-dimensional simulations of internal swash zones driven by well-developed non- linear internal waves and, ultimately, the accompanying turbulence-resolving three-dimensional simulations. Please cite as: Lloret, P., Diamessis, P., Stastna, M., & Thomsen, G. N. (2024). Data and scripts from: A robust numerical method for the generation and propagation of periodic finite-amplitude internal waves in natural waters using high-accuracy simulations [Data set]. Cornell University eCommons Repository. https://doi.org/10.7298/5VKW-0303 
    more » « less