Abstract The Orion Nebula Cluster (ONC) hosts protoplanetary disks experiencing external photoevaporation by the cluster’s intense UV field. These “proplyds” are comprised of a disk surrounded by an ionization front. We present ALMA Band 3 (3.1 mm) continuum observations of 12 proplyds. Thermal emission from the dust disks and free–free emission from the ionization fronts are both detected, and the high-resolution (0.″057) of the observations allows us to spatially isolate these two components. The morphology is unique compared to images at shorter (sub)millimeter wavelengths, which only detect the disks, and images at longer centimeter wavelengths, which only detect the ionization fronts. The disks are small (rd= 6.4–38 au), likely due to truncation by ongoing photoevaporation. They have low spectral indices (α≲ 2.1) measured between Bands 7 and 3, suggesting the dust emission is optically thick. They harbor tens of Earth masses of dust as computed from the millimeter flux using the standard method although their true masses may be larger due to the high optical depth. We derive their photoevaporative mass-loss rates in two ways: first, by invoking ionization equilibrium and second, by using the brightness of the free–free emission to compute the density of the outflow. We find decent agreement between these measurements and = 0.6–18.4 × 10−7M⊙yr−1. The photoevaporation timescales are generally shorter than the ∼1 Myr age of the ONC, underscoring the known “proplyd lifetime problem.” Disk masses that are underestimated due to being optically thick remains one explanation to ease this discrepancy. 
                        more » 
                        « less   
                    This content will become publicly available on April 9, 2026
                            
                            Discovery of Radio Recombination Lines from Proplyds in the Orion Nebula Cluster
                        
                    
    
            Abstract We present new Atacama Large Millimeter/submillimeter Array observations that, for the first time, detect hydrogen and helium radio recombination lines from a protoplanetary disk. We imaged the Orion Nebula Cluster at 3.1 mm with a spectral setup that covered then= 42 → 41 transitions of hydrogen (H41α) and helium (He41α). The unprecedented sensitivity of these observations enables us to search for radio recombination lines toward the positions of ∼200 protoplanetary disks. We detect H41αfrom 17 disks, all of which are HST-identified “proplyds.” The detected H41αemission is spatially coincident with the locations of proplyd ionization fronts, indicating that proplyd H41αemission is produced by gas that has been photoevaporated off the disk and ionized by UV radiation from massive stars. We measure the fluxes and widths of the detected H41αlines and find line fluxes of ∼30–800 mJy km s−1and line widths of ∼30–90 km s−1. The derived line widths indicate that the broadening of proplyd H41αemission is dominated by outflowing gas motions associated with external photoevaporation. The derived line fluxes, when compared with measurements of 3.1 mm free–free flux, imply that the ionization fronts of H41α-detected proplyds have electron temperatures of ∼6000–11,000 K and electron densities of ∼106–107cm−3. Finally, we detect He41αtoward one H41α-detected source and find evidence that this system is helium-rich. Our study demonstrates that radio recombination lines are readily detectable in ionized photoevaporating disks, providing a new way to measure disk properties in clustered star-forming regions. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10608958
- Publisher / Repository:
- American Astronomical Society
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 983
- Issue:
- 1
- ISSN:
- 0004-637X
- Page Range / eLocation ID:
- 81
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract We present a detailed study of the massive star-forming region G35.2-0.74N with Atacama Large Millimeter/submillimeter Array (ALMA) 1.3 mm multi-configuration observations. At 0.″2 (440 au) resolution, the continuum emission reveals several dense cores along a filamentary structure, consistent with previous ALMA 0.85 mm observations. At 0.″03 (66 au) resolution, we detect 22 compact sources, most of which are associated with the filament. Four of the sources are associated with compact centimeter continuum emission, and two of these are associated with H30αrecombination line emission. The H30αline kinematics shows the ordered motion of the ionized gas, consistent with disk rotation and/or outflow expansion. We construct models of photoionized regions to simultaneously fit the multiwavelength free–free fluxes and the H30αtotal fluxes. The derived properties suggest the presence of at least three massive young stars with nascent hypercompact Hiiregions. Two of these ionized regions are surrounded by a large rotating structure that feeds two individual disks, revealed by dense gas tracers, such as SO2, H2CO, and CH3OH. In particular, the SO2emission highlights two spiral structures in one of the disks and probes the faster-rotating inner disks. The12CO emission from the general region reveals a complex outflow structure, with at least four outflows identified. The remaining 18 compact sources are expected to be associated with lower-mass protostars forming in the vicinity of the massive stars. We find potential evidence for disk disruption due to dynamic interactions in the inner region of this protocluster. The spatial distribution of the sources suggests a smooth overall radial density gradient without subclustering, but with tentative evidence of primordial mass segregation.more » « less
- 
            Abstract We use the H41αrecombination line to create templates of the millimeter free–free emission in the ALMA-IMF continuum maps, which allows us to separate it from dust emission. This method complements spectral-index information and extrapolation from centimeter-wavelength maps. We use the derived maps to estimate the properties of up to 34 Hiiregions across the ALMA-IMF protoclusters. The hydrogen ionizing photon rateQ0and spectral types follow the evolutionary trend proposed by Motte et al. The youngest protoclusters lack detectable ionized gas, followed by protoclusters with increasing numbers of OB stars. The totalQ0increases from ∼1045s−1to >1049s−1. We used the adjacent He41αline to measure the relative number abundances of helium, finding values consistent with the Galactic interstellar medium, although a few outliers are discussed. A search for sites of maser amplification of the H41αline returned negative results. We looked for possible correlations between the electron densities, emission measures, andQ0with Hiiregion sizeD. The latter is the best correlated, withQ0∝D2.49 ± 0.18. This favors interpretations in which smaller ultracompact Hiiregions are not necessarily the less dynamically evolved versions of larger ones but rather are ionized by less massive stars. Moderate correlations were found between the dynamical width ΔVdynwithDandQ0. ΔVdynincreases from about 1 to 2 times the ionized-gas sound speed. Finally, an outlier Hiiregion south of W43-MM2 is discussed. We suggest that this source could harbor an embedded stellar or disk wind.more » « less
- 
            Abstract Emission lines from Rydberg transitions are detected for the first time from a region close to the surface of Betelgeuse. The H30αline is observed at 231.905 GHz, with an FWHM ∼42 km s−1and extended wings. A second line at 232.025 GHz (FWHM ∼21 km s−1), is modeled as a combination of Rydberg transitions of abundant low first ionization potential metals. Both H30αand the Rydberg combined line X30αare fitted by Voigt profiles, and collisional broadening with electrons may be partly responsible for the Lorentzian contribution, indicating electron densities of a few 108cm−3. X30αis located in a relatively smooth ring at a projected radius of 0.9× the optical photospheric radiusR⋆, whereas H30αis more clumpy, reaching a peak at ∼1.4R⋆. We use a semiempirical thermodynamic atmospheric model of Betelgeuse to compute the 232 GHz (1.29 mm) continuum and line profiles making simple assumptions. Photoionized abundant metals dominate the electron density, and the predicted surface of continuum optical depth unity at 232 GHz occurs at ∼1.3R⋆, in good agreement with observations. Assuming a Saha–Boltzmann distribution for the level populations of Mg, Si, and Fe, the model predicts that the X30αemission arises in a region of radially increasing temperature and turbulence. Inclusion of ionized C and non-LTE effects could modify the integrated fluxes and location of emission. These simulations confirm the identity of the Rydberg transition lines observed toward Betelgeuse and reveal that such diagnostics can improve future atmospheric models.more » « less
- 
            Abstract The study of the interaction between ionized jets, molecular outflows, and their environments is critical to understanding high-mass star formation, especially because jets and outflows are thought to be key in the transfer of angular momentum outward from accretion disks. We report a low spectral resolution Karl G. Jansky Very Large Array (VLA) survey for OH, NH3, CH3OH, and hydrogen radio recombination lines, toward a sample of 58 high-mass star-forming regions that contain numerous ionized jet candidates. The observations are from a survey designed to detect radio continuum; the novel aspect of this work is to search for spectral lines in broadband VLA data (we provide the script developed in this work to facilitate exploration of other data sets). We report detection of 25 GHz CH3OH transitions toward 10 sources; 5 of them also show NH3emission. We found that most of the sources detected in CH3OH and NH3have been classified as ionized jets or jet candidates and that the emission lines are coincident with, or very near (≲0.1 pc), these sources; hence, these molecular lines could be used as probes of the environment near the launching site of jets/outflows. No radio recombination lines were detected, but we found that the rms noise of stacked spectra decreases following the radiometer equation. Therefore, detecting radio recombination lines in a sample of brighter free–free continuum sources should be possible. This work demonstrates the potential of broadband VLA continuum observations as low resolution spectral-line scans.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
