skip to main content


Title: Broadband VLA Spectral-line Survey of a Sample of Ionized Jet Candidates
Abstract

The study of the interaction between ionized jets, molecular outflows, and their environments is critical to understanding high-mass star formation, especially because jets and outflows are thought to be key in the transfer of angular momentum outward from accretion disks. We report a low spectral resolution Karl G. Jansky Very Large Array (VLA) survey for OH, NH3, CH3OH, and hydrogen radio recombination lines, toward a sample of 58 high-mass star-forming regions that contain numerous ionized jet candidates. The observations are from a survey designed to detect radio continuum; the novel aspect of this work is to search for spectral lines in broadband VLA data (we provide the script developed in this work to facilitate exploration of other data sets). We report detection of 25 GHz CH3OH transitions toward 10 sources; 5 of them also show NH3emission. We found that most of the sources detected in CH3OH and NH3have been classified as ionized jets or jet candidates and that the emission lines are coincident with, or very near (≲0.1 pc), these sources; hence, these molecular lines could be used as probes of the environment near the launching site of jets/outflows. No radio recombination lines were detected, but we found that the rms noise of stacked spectra decreases following the radiometer equation. Therefore, detecting radio recombination lines in a sample of brighter free–free continuum sources should be possible. This work demonstrates the potential of broadband VLA continuum observations as low resolution spectral-line scans.

 
more » « less
Award ID(s):
1814011
NSF-PAR ID:
10439598
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal Supplement Series
Volume:
267
Issue:
2
ISSN:
0067-0049
Page Range / eLocation ID:
Article No. 43
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We present Atacama Large Millimeter Array band 6/7 (1.3 mm/0.87 mm) and Very Large Array Ka-band (9 mm) observations toward NGC 2071 IR, an intermediate-mass star-forming region. We characterize the continuum and associated molecular line emission toward the most luminous protostars, i.e., IRS1 and IRS3, on ∼100 au (0.″2) scales. IRS1 is partly resolved in the millimeter and centimeter continuum, which shows a potential disk. IRS3 has a well-resolved disk appearance in the millimeter continuum and is further resolved into a close binary system separated by ∼40 au at 9 mm. Both sources exhibit clear velocity gradients across their disk major axes in multiple spectral lines including C18O, H2CO, SO, SO2, and complex organic molecules like CH3OH,13CH3OH, and CH3OCHO. We use an analytic method to fit the Keplerian rotation of the disks and give constraints on physical parameters with a Markov Chain Monte Carlo routine. The IRS3 binary system is estimated to have a total mass of 1.4–1.5M. IRS1 has a central mass of 3–5Mbased on both kinematic modeling and its spectral energy distribution, assuming that it is dominated by a single protostar. For both IRS1 and IRS3, the inferred ejection directions from different tracers, including radio jet, water maser, molecular outflow, and H2emission, are not always consistent, and for IRS1 these can be misaligned by ∼50°. IRS3 is better explained by a single precessing jet. A similar mechanism may be present in IRS1 as well but an unresolved multiple system in IRS1 is also possible.

     
    more » « less
  2. Abstract

    We report Very Large Array observations in theQband toward 10 ionized jet candidates to search for SiO emission, a well-known shocked gas tracer. We detected 7 mm continuum counterparts toward 90% of the jet candidates. In most cases, the jet candidate is located toward the center of the 7 mm core, and the high masses (≈100M) and densities (≈107cm−3) of the cores suggest that the central objects are very young high-mass protostars. We detected SiOJ= 1–0 emission associated with six target sources. In all cases, the morphology and spectrum of the emission is consistent with what is expected for molecular jets along an outflow axis, thus confirming the jet nature of 60% of our sample. Our data suggest a positive correlation between the SiO luminosityLSiO, and both the bolometric luminosityLBoland the radio luminositySνd2of the driving sources.

     
    more » « less
  3. null (Ed.)
    ABSTRACT We report Keck–NIRSPEC observations of the Brackett α 4.05 μm recombination line across the two candidate embedded super star clusters (SSCs) in NGC 1569. These SSCs power a bright H ii region and have been previously detected as radio and mid-infrared sources. Supplemented with high-resolution VLA mapping of the radio continuum along with IRTF–TEXES spectroscopy of the [S iv] 10.5 μm line, the Brackett α data provide new insight into the dynamical state of gas ionized by these forming massive clusters. Near-infrared sources detected in 2 μm images from the slit-viewing Camera are matched with Gaia sources to obtain accurate celestial coordinates and slit positions to within ∼0${_{.}^{\prime\prime}}$1. Br α is detected as a strong emission peak powered by the less luminous infrared source, MIR1 (LIR ∼ 2 × 107 $\rm L_\odot$). The second candidate SSC MIR2 is more luminous (LIR ≳ 4 × 108 $\rm L_\odot$) but exhibits weak radio continuum and Br α emission, suggesting the ionized gas is extremely dense (ne ≳ 105 cm−3), corresponding to hypercompact H ii regions around newborn massive stars. The Br α and [S iv] lines across the region are both remarkably symmetric and extremely narrow, with observed line widths Δv ≃ 40 $\rm km\, s^{-1}$, full width at half-maximum. This result is the first clear evidence that feedback from NGC 1569’s youngest giant clusters is currently incapable of rapid gas dispersal, consistent with the emerging theoretical paradigm in the formation of giant star clusters. 
    more » « less
  4. ABSTRACT

    We present results from a combined radio polarization and emission-line study of five type 2 quasars at z < 0.2 with the Karl G. Jansky Very Large Array (VLA) B-array at 5 GHz and Hubble Space Telescope (HST) [O iii] observations. These five sources are known to exhibit close association between radio structures and ionized gas morphology and kinematics. Four sources (J0945+1737, J1000+1242, J1356+1026, and J1430+1339) show polarization in the current data. J1010+1413 is the unpolarized source in our sample. We detect $0.5{-}1{{\ \rm per\ cent}}$ fractional polarization in the radio cores and a high fractional polarization ($10{-}30{{\ \rm per\ cent}}$) in the lobes of these sources. The morphological, spectral, and polarization properties suggest a jet origin for radio emission in J0945+1737, J1000+1242, J1010+1413, and J1430+1339 whereas the current data cannot fully discern the origin of radio emission (jet or wind) in J1356+1026. An anticorrelation between various polarized knots in the radio and [O iii] emission is observed in our sources, similar to that observed in some radio-loud AGN in the literature. This suggests that the radio emission is likely to be depolarized by the emission-line gas. By modelling the depolarization effects, we estimate the size of the emission-line gas clouds to be ∼(2.8 ± 1.7) × 10−5 parsec and the amount of thermal material mixed with the synchrotron plasma to be ∼(1.01 ± 0.08) × 106 M⊙ in the lobe of J0945+1737 (which exhibits the most prominent polarization signature in its lobe). The current work demonstrates that the interplay of jets/winds and emission-line gas is most likely responsible for the nature of radio outflows in radio-quiet AGN.

     
    more » « less
  5. Exploiting the sensitivity of the IRAM NOrthern Extended Millimeter Array (NOEMA) and its ability to process large instantaneous bandwidths, we have studied the morphology and other properties of the molecular gas and dust in the star forming galaxy, H-ATLAS J131611.5+281219 (HerBS-89a), at z = 2.95. High angular resolution (0 . ″3) images reveal a partial 1 . ″0 diameter Einstein ring in the dust continuum emission and the molecular emission lines of 12 CO(9−8) and H 2 O(2 02  − 1 11 ). Together with lower angular resolution (0 . ″6) images, we report the detection of a series of molecular lines including the three fundamental transitions of the molecular ion OH + , namely (1 1  − 0 1 ), (1 2  − 0 1 ), and (1 0  − 0 1 ), seen in absorption; the molecular ion CH + (1 − 0) seen in absorption, and tentatively in emission; two transitions of amidogen (NH 2 ), namely (2 02  − 1 11 ) and (2 20  − 2 11 ) seen in emission; and HCN(11 − 10) and/or NH(1 2  − 0 1 ) seen in absorption. The NOEMA data are complemented with Very Large Array data tracing the 12 CO(1 − 0) emission line, which provides a measurement of the total mass of molecular gas and an anchor for a CO excitation analysis. In addition, we present Hubble Space Telescope imaging that reveals the foreground lensing galaxy in the near-infrared (1.15  μ m). Together with photometric data from the Gran Telescopio Canarias, we derive a photometric redshift of z phot = 0.9 −0.5 +0.3 for the foreground lensing galaxy. Modeling the lensing of HerBS-89a, we reconstruct the dust continuum (magnified by a factor μ  ≃ 5.0) and molecular emission lines (magnified by μ  ∼ 4 − 5) in the source plane, which probe scales of ∼0 . ″1 (or 800 pc). The 12 CO(9 − 8) and H 2 O(2 02  − 1 11 ) emission lines have comparable spatial and kinematic distributions; the source-plane reconstructions do not clearly distinguish between a one-component and a two-component scenario, but the latter, which reveals two compact rotating components with sizes of ≈1 kpc that are likely merging, more naturally accounts for the broad line widths observed in HerBS-89a. In the core of HerBS-89a, very dense gas with n H 2  ∼ 10 7 − 9 cm −3 is revealed by the NH 2 emission lines and the possible HCN(11 − 10) absorption line. HerBS-89a is a powerful star forming galaxy with a molecular gas mass of M mol  = (2.1 ± 0.4) × 10 11   M ⊙ , an infrared luminosity of L IR  = (4.6 ± 0.4) × 10 12   L ⊙ , and a dust mass of M dust  = (2.6 ± 0.2) × 10 9   M ⊙ , yielding a dust-to-gas ratio δ GDR  ≈ 80. We derive a star formation rate SFR = 614 ± 59  M ⊙ yr −1 and a depletion timescale τ depl  = (3.4 ± 1.0) × 10 8 years. The OH + and CH + absorption lines, which trace low (∼100 cm −3 ) density molecular gas, all have their main velocity component red-shifted by Δ V  ∼ 100 km s −1 relative to the global CO reservoir. We argue that these absorption lines trace a rare example of gas inflow toward the center of a galaxy, indicating that HerBS-89a is accreting gas from its surroundings. 
    more » « less