Abstract We report Very Large Array observations in theQband toward 10 ionized jet candidates to search for SiO emission, a well-known shocked gas tracer. We detected 7 mm continuum counterparts toward 90% of the jet candidates. In most cases, the jet candidate is located toward the center of the 7 mm core, and the high masses (≈100M⊙) and densities (≈107cm−3) of the cores suggest that the central objects are very young high-mass protostars. We detected SiOJ= 1–0 emission associated with six target sources. In all cases, the morphology and spectrum of the emission is consistent with what is expected for molecular jets along an outflow axis, thus confirming the jet nature of 60% of our sample. Our data suggest a positive correlation between the SiO luminosityLSiO, and both the bolometric luminosityLBoland the radio luminositySνd2of the driving sources. 
                        more » 
                        « less   
                    
                            
                            Broadband VLA Spectral-line Survey of a Sample of Ionized Jet Candidates
                        
                    
    
            Abstract The study of the interaction between ionized jets, molecular outflows, and their environments is critical to understanding high-mass star formation, especially because jets and outflows are thought to be key in the transfer of angular momentum outward from accretion disks. We report a low spectral resolution Karl G. Jansky Very Large Array (VLA) survey for OH, NH3, CH3OH, and hydrogen radio recombination lines, toward a sample of 58 high-mass star-forming regions that contain numerous ionized jet candidates. The observations are from a survey designed to detect radio continuum; the novel aspect of this work is to search for spectral lines in broadband VLA data (we provide the script developed in this work to facilitate exploration of other data sets). We report detection of 25 GHz CH3OH transitions toward 10 sources; 5 of them also show NH3emission. We found that most of the sources detected in CH3OH and NH3have been classified as ionized jets or jet candidates and that the emission lines are coincident with, or very near (≲0.1 pc), these sources; hence, these molecular lines could be used as probes of the environment near the launching site of jets/outflows. No radio recombination lines were detected, but we found that the rms noise of stacked spectra decreases following the radiometer equation. Therefore, detecting radio recombination lines in a sample of brighter free–free continuum sources should be possible. This work demonstrates the potential of broadband VLA continuum observations as low resolution spectral-line scans. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10439598
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal Supplement Series
- Volume:
- 267
- Issue:
- 2
- ISSN:
- 0067-0049
- Page Range / eLocation ID:
- Article No. 43
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract We present Atacama Large Millimeter Array band 6/7 (1.3 mm/0.87 mm) and Very Large Array Ka-band (9 mm) observations toward NGC 2071 IR, an intermediate-mass star-forming region. We characterize the continuum and associated molecular line emission toward the most luminous protostars, i.e., IRS1 and IRS3, on ∼100 au (0.″2) scales. IRS1 is partly resolved in the millimeter and centimeter continuum, which shows a potential disk. IRS3 has a well-resolved disk appearance in the millimeter continuum and is further resolved into a close binary system separated by ∼40 au at 9 mm. Both sources exhibit clear velocity gradients across their disk major axes in multiple spectral lines including C18O, H2CO, SO, SO2, and complex organic molecules like CH3OH,13CH3OH, and CH3OCHO. We use an analytic method to fit the Keplerian rotation of the disks and give constraints on physical parameters with a Markov Chain Monte Carlo routine. The IRS3 binary system is estimated to have a total mass of 1.4–1.5M⊙. IRS1 has a central mass of 3–5M⊙based on both kinematic modeling and its spectral energy distribution, assuming that it is dominated by a single protostar. For both IRS1 and IRS3, the inferred ejection directions from different tracers, including radio jet, water maser, molecular outflow, and H2emission, are not always consistent, and for IRS1 these can be misaligned by ∼50°. IRS3 is better explained by a single precessing jet. A similar mechanism may be present in IRS1 as well but an unresolved multiple system in IRS1 is also possible.more » « less
- 
            null (Ed.)ABSTRACT We report Keck–NIRSPEC observations of the Brackett α 4.05 μm recombination line across the two candidate embedded super star clusters (SSCs) in NGC 1569. These SSCs power a bright H ii region and have been previously detected as radio and mid-infrared sources. Supplemented with high-resolution VLA mapping of the radio continuum along with IRTF–TEXES spectroscopy of the [S iv] 10.5 μm line, the Brackett α data provide new insight into the dynamical state of gas ionized by these forming massive clusters. Near-infrared sources detected in 2 μm images from the slit-viewing Camera are matched with Gaia sources to obtain accurate celestial coordinates and slit positions to within ∼0$${_{.}^{\prime\prime}}$$1. Br α is detected as a strong emission peak powered by the less luminous infrared source, MIR1 (LIR ∼ 2 × 107 $$\rm L_\odot$$). The second candidate SSC MIR2 is more luminous (LIR ≳ 4 × 108 $$\rm L_\odot$$) but exhibits weak radio continuum and Br α emission, suggesting the ionized gas is extremely dense (ne ≳ 105 cm−3), corresponding to hypercompact H ii regions around newborn massive stars. The Br α and [S iv] lines across the region are both remarkably symmetric and extremely narrow, with observed line widths Δv ≃ 40 $$\rm km\, s^{-1}$$, full width at half-maximum. This result is the first clear evidence that feedback from NGC 1569’s youngest giant clusters is currently incapable of rapid gas dispersal, consistent with the emerging theoretical paradigm in the formation of giant star clusters.more » « less
- 
            Abstract At centimeter wavelengths, single-dish observations have suggested that the Sagittarius (Sgr) B2 molecular cloud at the Galactic Center hosts weak maser emission from several organic molecules, including CH2NH, HNCNH, and HCOOCH3. However, the lack of spatial distribution information on these new maser species has prevented us from assessing the excitation conditions of the maser emission as well as their pumping mechanisms. Here, we present a mapping study toward Sgr B2 north (N) to locate the region where the complex maser emission originates. We report the first detection of the Class I methanol (CH3OH) maser at 84 GHz and the first interferometric map of the methanimine (CH2NH) maser at 5.29 GHz toward this region. In addition, we present a tool for modeling and fitting the unsaturated molecular maser signals with non-LTE radiative transfer models and Bayesian analysis using the Markov Chain Monte Carlo approach. These enable us to quantitatively assess the observed spectral profiles. The results suggest a two-chain-clump model for explaining the intense CH3OH Class I maser emission toward a region with low continuum background radiation. By comparing the spatial origin and extent of maser emission from several molecular species, we find that the 5.29 GHz CH2NH maser has a close spatial relationship with the 84 GHz CH3OH Class I masers. This relationship serves as observational evidence to suggest a similar collisional pumping mechanism for these maser transitions.more » « less
- 
            In this study we analyze 70 radio continuum sources associated with dust clumps and considered to be candidates for the earliest stages of high-mass star formation. The detection of these sources was reported by Rosero et al. (2016), who found most of them to show weak ( < 1 mJy) and compact ( < 0.6") radio emission. Herein, we used the observed parameters of these sources to investigate the origin of the radio continuum emission. We found that at least ∼ 30% of these radio detections are most likely ionized jets associated with high-mass protostars, but for the most compact sources we cannot discard the scenario that they represent pressure-confined HII regions. This result is highly relevant for recent theoretical models based on core accretion that predict the first stages of ionization from high-mass stars to be in the form of jets. Additionally, we found that properties such as the radio luminosity as a function of the bolometric luminosity of ionized jets from low and high-mass stars are extremely well-correlated. Our data improve upon previous studies by providing further evidence of a common origin for jets independently of luminosity.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
