skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Pelvic Ring Fractures: A Biomechanical Comparison of Sacral and Lumbopelvic Fixation Techniques
Background Context: Pelvic ring fractures are becoming more common in the aging population and can prove to be fatal, having mortality rates between 10% and 16%. Stabilization of these fractures is challenging and often require immediate internal fixation. Therefore, it is necessary to have a biomechanical understanding of the different fixation techniques for pelvic ring fractures. Methods: A previously validated three-dimensional finite element model of the lumbar spine, pelvis, and femur was used for this study. A unilateral pelvic ring fracture was simulated by resecting the left side of the sacrum and pelvis. Five different fixation techniques were used to stabilize the fracture. A compressive follower load and pure moment was applied to compare different biomechanical parameters including range of motion (contralateral sacroiliac joint, L1-S1 segment, L5-S1 segment), and stresses (L5-S1 nucleus stresses, instrument stresses) between different fixation techniques. Results: Trans-iliac–trans-sacral screw fixation at S1 and S2 showed the highest stabilization for horizontal and vertical displacement at the sacral fracture site and reduction of contralateral sacroiliac joint for bending and flexion range of motion by 165% and 121%, respectively. DTSF (Double transiliac rod and screw fixation) model showed highest stabilization in horizontal displacement at the pubic rami fracture site, while the L5_PF_W_CC (L5-Ilium posterior screw fixation with cross connectors) and L5_PF_WO_CC (L5-Ilium posterior screw fixation without cross connectors) showed higher rod stresses, reduced L1-S1 (approximately 28%), and L5-S1 (approximately 90%) range of motion. Conclusions: Longer sacral screw fixations were superior in stabilizing sacral and contralateral sacroiliac joint range of motion. Lumbopelvic fixations displayed a higher degree of stabilization in the horizontal displacement compared to vertical displacement of pubic rami fracture, while also indicating the highest rod stresses. When determining the surgical approach for pelvic ring fractures, patient-specific factors should be accounted for to weigh the advantages and disadvantages for each technique.  more » « less
Award ID(s):
1916636
PAR ID:
10609028
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
MDPI
Date Published:
Journal Name:
Bioengineering
Volume:
11
Issue:
4
ISSN:
2306-5354
Page Range / eLocation ID:
348
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract PurposeTo assess the effect of various pelvic fixation techniques and number of rods on biomechanics of the proximal junction of long thoracolumbar posterior instrumented fusions. MethodsA validated spinopelvic finite-element (FE) model was instrumented with L5–S1 ALIF and one of the following 9 posterior instrumentation configurations: (A) one traditional iliac screw bilaterally (“2 Iliac/2 Rods”); (B) T10 to S1 (“Sacral Only”); (C) unilateral traditional iliac screw (“1 Iliac/2 Rods”); (D) one traditional iliac screw bilaterally with one midline accessory rod (“2 Iliac/3 rods”); (E) S2AI screws connected directly to the midline rods (“2 S2AI/2 Rods”); and two traditional iliac screws bilaterally with two lateral accessory rods connected to the main rods at varying locations (F1: T10–11, F2: T11–12, F3: T12–L1, F4: L1–2) (“4 Iliac/4 Rods”). Range of motions (ROM) at T10–S1 and T9–T10 were recorded and compared between models. The T9–T10 intradiscal pressures and stresses of the T9–10 disc’s annulus in addition to the von Mises stresses of the T9 and T10 vertebral bodies were recorded and compared. ResultsFor T10–S1 ROM, 4 iliac/4 rods had lowest ROM in flexion and extension, while 2 S2AI/2 rods showed lowest ROM in rotation. Constructs with 3 or 4 rods had lower stresses on the primary rods compared to 2-rod constructs. At the proximal adjacent disc (T9–10), 4 iliac/4 rods showed lowest ROM, lowest intradiscal pressures, and lowest annular stress in all directions (most pronounced in flexion–extension). Under flexion and extension, 4 iliac/4 rods also showed the lowest von Mises stresses on the T10 vertebral body but the highest stresses on the T9 vertebral body. ConclusionsDual iliac screws with 4 rods across the lumbosacral junction and extending to the thoracolumbar junction demonstrated the lowest T10–S1 ROM, the lowest adjacent segment disc (T9–T10) ROM, intradiscal pressures, and annular stresses, and the lowest UIV stresses, albeit with the highest UIV + 1 stresses. Additional studies are needed to confirm whether these biomechanical findings dictate clinical outcomes and effect rates of proximal junctional kyphosis and failure. 
    more » « less
  2. Abstract PurposeTo develop and validate a finite element (FE) model of a sacral pedicle subtraction osteotomy (S1-PSO) and to compare biomechanical properties of various multi-rod configurations to stabilize S1-PSOs. MethodsA previously validated FE spinopelvic model was used to develop a 30° PSO at the sacrum. Five multi-rod techniques spanning the S1-PSO were made using 4 iliac screws and a variety of primary rods (PR) and accessory rods (AR; lateral: Lat-AR or medial: Med-AR). All constructs, except one, utilized a horizontal rod (HR) connecting the iliac bolts to which PRs and Med-ARs were connected. Lat-ARs were connected to proximal iliac bolts. The simulation was performed in two steps with the acetabula fixed. For each model, PSO ROM and maximum stress on the PRs, ARs, and HRs were recorded and compared. The maximum stress on the L5–S1 disc and the PSO forces were captured and compared. ResultsHighest PSO ROMs were observed for 4-Rods (HR + 2 Med-AR). Constructs consisting of 5-Rods (HR + 2 Lat-ARs + 1 Med-AR) and 6-Rods (HR + 2 Lat-AR + 2 Med-AR) had the lowest PSO ROM. The least stress on the primary rods was seen with 6-Rods, followed by 5-Rods and 4-Rods (HR + 2 Lat-ARs). Lowest PSO forces and lowest L5–S1 disc stresses were observed for 4-Rod (Lat-AR), 5-Rod, and 6-Rod constructs, while 4-Rods (HR + Med-AR) had the highest. ConclusionIn this first FE analysis of an S1-PSO, the 4-Rod construct (HR + Med-AR) created the least rigid environment and highest PSO forces anteriorly. While 5- and 6-Rods created the stiffest constructs and lowest stresses on the primary rods, it also jeopardized load transfer to the anterior column, which may not be favorable for healing anteriorly. A balance between the construct’s rigidity and anterior load sharing is essential. 
    more » « less
  3. Excessive low back joint loading during material handling tasks is considered a critical risk factor of musculoskeletal disorders (MSD). Therefore, it is necessary to understand the low-back joint loading during manual material handling to prevent low-back injuries. Recently, computer vision-based pose reconstruction methods have shown the potential in human kinematics and kinetics analysis. This study performed L5/S1 joint moment estimation by combining VideoPose3D, an open-source pose reconstruction library, and a biomechanical model. Twelve participants lifting a 10 kg plastic crate from the floor to a knuckle-height shelf were captured by a camera and a laboratory-based motion tracking system. The L5/S1 joint moments obtained from the camera video were compared with those obtained from the motion tracking system. The comparison results indicate that estimated total peak L5/S1 moments during lifting tasks were positively correlated to the reference L5/S1 joint moment, and the percentage error is 7.7%. 
    more » « less
  4. Objective: The objective of this study was to compare the biomechanical differences of different rod configurations following anterior column realignment (ACR) and pedicle subtraction osteotomy (PSO) for an optimal correction technique and rod configuration that would minimize the risk of rod failure.Methods: A validated spinopelvic (L1-pelvis) finite element model was used to simulate ACR at the L3–4 level. The ACR procedure was followed by dual-rod fixation, and for 4-rod constructs, either medial/lateral accessory rods (connected to primary rods) or satellite rods (directly connected to ACR level screws). The range of motion (ROM), maximum von Mises stress on the rods, and factor of safety (FOS) were calculated for the ACR models and compared to the existing literature of different PSO rod configurations.Results: All of the 4-rod ACR constructs showed a reduction in ROM and maximum von Mises stress compared to the dual-rod ACR construct. Additionally, all of the 4-rod ACR constructs showed greater percentage reduction in ROM and maximum von Mises stress compared to the PSO 4-rod configurations. The ACR satellite rod construct had the maximum stress reduction i.e., 47.3% compared to dual-rod construct and showed the highest FOS (4.76). These findings are consistent with existing literature that supports the use of satellite rods to reduce the occurrence of rod fracture.Conclusion: Our findings suggest that the ACR satellite rod construct may be the most beneficial in reducing the risk of rod failure compared to all other PSO and ACR constructs. 
    more » « less
  5. Abstract PurposeTo evaluate proximal junctional biomechanics of a MLSS relative to traditional pedicle screw fixation at the proximal extent of T10-pelvis posterior instrumentation constructs (T10-p PSF). MethodsA previously validated three-dimensional osseoligamentous spinopelvic finite element (FE) model was used to compare proximal junctional range-of-motion (ROM), vertebral body stresses, and discal biomechanics between two groups: (1) T10-p with a T10-11 MLSS (“T10-11 MLSS”) and (2) T10-p with a traditional T10 pedicle screw (“Traditional T10-PS”). ResultsThe T10-11 MLSS had a 5% decrease in T9 cortical bone stress compared to Traditional T10-PS. Conversely, the T10 and T11 bone stresses increased by 46% and 98%, respectively, with T10-11 MLSS compared to Traditional T10-PS. Annular stresses and intradiscal pressures (IDP) were similar at T9-T10 between constructs. At the T10-11 disc, T10-11 MLSS decreased annular stresses by 29% and IDP by 48% compared to Traditional T10-PS. Adjacent ROM (T8-9 & T9-10) were similar between T10-11 MLSS and Traditional T10-PS. T10-11 MLSS had 39% greater ROM at T10-11 and 23% less ROM at T11-12 compared to Traditional T10-PS. ConclusionsIn this FE analysis, a T10-11 MLSS at the proximal extent of T10-pelvis posterior instrumentation resulted in increased T10 and T11 cortical bone stresses, decreased discal annular stress and IDP and increased ROM at T10-11, and no change in ROM at the adjacent level. Given the complex and multifactorial nature of proximal junctional kyphosis, these results require additional biomechanical and clinical evaluations to determine the clinical utility of MLSS on the proximal junctions of thoracolumbar posterior instrumented fusions. 
    more » « less