skip to main content


Title: A Single-Camera Computer Vision-Based Method for 3D L5/S1 MomentEstimation During Lifting Tasks
Excessive low back joint loading during material handling tasks is considered a critical risk factor of musculoskeletal disorders (MSD). Therefore, it is necessary to understand the low-back joint loading during manual material handling to prevent low-back injuries. Recently, computer vision-based pose reconstruction methods have shown the potential in human kinematics and kinetics analysis. This study performed L5/S1 joint moment estimation by combining VideoPose3D, an open-source pose reconstruction library, and a biomechanical model. Twelve participants lifting a 10 kg plastic crate from the floor to a knuckle-height shelf were captured by a camera and a laboratory-based motion tracking system. The L5/S1 joint moments obtained from the camera video were compared with those obtained from the motion tracking system. The comparison results indicate that estimated total peak L5/S1 moments during lifting tasks were positively correlated to the reference L5/S1 joint moment, and the percentage error is 7.7%.  more » « less
Award ID(s):
2013451
NSF-PAR ID:
10342302
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the Human Factors and Ergonomics Society Annual Meeting
Volume:
65
Issue:
1
ISSN:
2169-5067
Page Range / eLocation ID:
472 to 476
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Goal: Lifting is a common manual material handling task performed in the workplaces. It is considered as one of the main risk factors for work-related musculoskeletal disorders. An important criterion to identify the unsafe lifting task is the values of the net force and moment at L5/S1 joint. These values are mainly calculated in a laboratory environment, which utilizes marker-based sensors to collect three-dimensional (3-D) information and force plates to measure the external forces and moments. However, this method is usually expensive to set up, time-consuming in process, and sensitive to the surrounding environment. In this study, we propose a deep neural network (DNN)-based framework for 3-D pose estimation, which addresses the aforementioned limitations, and we employ the results for L5/S1 moment and force calculation. Methods: At the first step of the proposed framework, full body 3-D pose is captured using a DNN, then at the second step, estimated 3-D body pose along with the subject's anthropometric information is utilized to calculate L5/S1 join's kinetic by a top-down inverse dynamic algorithm. Results: To fully evaluate our approach, we conducted experiments using a lifting dataset consisting of 12 subjects performing various types of lifting tasks. The results are validated against a marker-based motion capture system as a reference. The grand mean ± SD of the total moment/force absolute errors across all the dataset was 9.06 ± 7.60 N·m/4.85 ± 4.85 N. Conclusion: The proposed method provides a reliable tool for assessment of the lower back kinetics during lifting and can be an alternative when the use of marker-based motion capture systems is not possible. 
    more » « less
  2. null (Ed.)
    Abstract Symmetric lifting is a common manual material handling strategy in daily life and is the main cause of low back pain. In the literature, symmetric lifting is mainly simulated by using two-dimensional (2D) models because of their simplicity and low computational cost. In practice, however, symmetric lifting can generate asymmetric kinetics especially when the lifting weight is heavy and symmetric lifting based on 2D models misses this important asymmetric kinetics information. Therefore, three-dimensional (3D) models are necessary for symmetric lifting simulation to capture asymmetric kinetics. The purpose of this single-subject case study is to compare the optimization formulations and simulation results for symmetric lifting by using 2D and 3D human models and to identify their pros and cons. In this case study, a 10-degrees-of-freedom (DOFs) 2D skeletal model and a 40-DOFs 3D skeletal model are employed to predict the symmetric maximum weight lifting motion, respectively. The lifting problem is formulated as a multi-objective optimization (MOO) problem to minimize the dynamic effort and maximize the box weight. An inverse dynamic optimization approach is used to determine the optimal lifting motion and the maximum lifting weight considering dynamic joint strength. Lab experiments are carried out to validate the predicted motions. The predicted lifting motion, ground reaction forces (GRFs), and maximum box weight from the 2D and 3D human models for Subject #8 are compared with the experimental data. Recommendations are given. 
    more » « less
  3. We consider the task of 3D pose estimation and tracking of multiple people seen in an arbitrary number of camera feeds. We propose TesseTrack, a novel top-down approach that simultaneously reasons about multiple individuals’ 3D body joint reconstructions and associations in space and time in a single end-to-end learnable framework. At the core of our approach is a novel spatio-temporal formulation that operates in a common voxelized feature space aggregated from single- or multiple camera views. After a person detection step, a 4D CNN produces short-term persons pecific representations which are then linked across time by a differentiable matcher. The linked descriptions are then merged and deconvolved into 3D poses. This joint spatio-temporal formulation contrasts with previous piecewise strategies that treat 2D pose estimation, 2D-to-3D lifting, and 3D pose tracking as independent sub-problems that are error-prone when solved in isolation. Furthermore, unlike previous methods, TesseTrack is robust to changes in the number of camera views and achieves very good results even if a single view is available at inference time. Quantitative evaluation of 3D pose reconstruction accuracy on standard benchmarks shows significant improvements over the state of the art. Evaluation of multi-person articulated 3D pose tracking in our novel evaluation framework demonstrates the superiority of TesseTrack over strong baselines. 
    more » « less
  4. Recovering rigid registration between successive camera poses lies at the heart of 3D reconstruction, SLAM and visual odometry. Registration relies on the ability to compute discriminative 2D features in successive camera images for determining feature correspondences, which is very challenging in feature-poor environments, i.e. low-texture and/or low-light environments. In this paper, we aim to address the challenge of recovering rigid registration between successive camera poses in feature-poor environments in a Visual Inertial Odometry (VIO) setting. In addition to inertial sensing, we instrument a small aerial robot with an RGBD camera and propose a framework that unifies the incorporation of 3D geometric entities: points, lines, and planes. The tracked 3D geometric entities provide constraints in an Extended Kalman Filtering framework. We show that by directly exploiting 3D geometric entities, we can achieve improved registration. We demonstrate our approach on different texture-poor environments, with some containing only flat texture-less surfaces providing essentially no 2D features for tracking. In addition, we evaluate how the addition of different 3D geometric entities contributes to improved pose estimation by comparing an estimated pose trajectory to a ground truth pose trajectory obtained from a motion capture system. We consider computationally efficient methods for detecting 3D points, lines and planes, since our goal is to implement our approach on small mobile robots, such as drones. 
    more » « less
  5. This work aims to investigate the effects of knee extension assistance during squat lifting. We hypothesize that adding an external torque to the knee joint using a soft inflatable exosuit can potentially induce a reduction in the muscular effort that extends to the posterior chain muscles. A total of 8 healthy test participants are recruited and instructed to lift a weight equivalent to 10% of their bodyweight. The muscle activities of the left and right Vastus Lateralis, Biceps Femoris, Gluteus Maximus, Erector Spinae (Iliocostalis and Longissimus) and Multifidus muscle groups were studied for baseline, non-assisted, and assisted conditions. The majority of participants (6 out of 8) demonstrated consistent reduction in the muscular effort of at least one muscle group of the posterior chain. A maximum reduction of 55% in the average muscle activity of the Multifidus muscle group is observed in one participant. Different neuromuscular adaptation mechanisms were observed among subjects that ultimately led to a reduction in lower-limb or back muscles activity. The results reveal that assisting knee extension during a lifting task has significant effects on muscle activity with benefits that extend to the posterior chain muscles. This work provides early evidence that the soft inflatable knee exosuit can be used in material handling tasks to reduce muscle effort and prevent work-related injuries. 
    more » « less