We introduce the ParClusterers Benchmark Suite (PCBS)---a collection of highly scalable parallel graph clustering algorithms and benchmarking tools that streamline comparing different graph clustering algorithms and implementations. The benchmark includes clustering algorithms that target a wide range of modern clustering use cases, including community detection, classification, and dense subgraph mining. The benchmark toolkit makes it easy to run and evaluate multiple instances of different clustering algorithms with respect to both the running time and quality. We evaluate the PCBS algorithms empirically and find that they deliver both the state of the art quality and the running time. In terms of the running time, they are on average over 4x faster than the fastest library we compared to. In terms of quality, the correlation clustering algorithm [Shi et al., VLDB'21] optimizing for the LambdaCC objective, which does not have a direct counterpart in other libraries, delivers the highest quality in the majority of datasets that we used. 
                        more » 
                        « less   
                    
                            
                            BYO: A Unified Framework for Benchmarking Large-Scale Graph Containers
                        
                    
    
            A fundamental building block in any graph algorithm is agraph container -- a data structure used to represent the graph. Ideally, a graph container enables efficient access to the underlying graph, has low space usage, and supports updating the graph efficiently. In this paper, we conduct an extensive empirical evaluation of graph containers designed to support running algorithms on large graphs. To our knowledge, this is the firstapples-to-applescomparison of graph containers rather than overall systems, which include confounding factors such as differences in algorithm implementations and infrastructure. We measure the running time of 10 highly-optimized algorithms across over 20 different containers and 10 graphs. Somewhat surprisingly, we find that the average algorithm running time does not differ much across containers, especially those that support dynamic updates. Specifically, a simple container based on an off-the-shelf B-tree is only 1.22× slower on average than a highly optimized static one. Moreover, we observe that simplifying a graph-container Application Programming Interface (API) to only a few simple functions incurs a mere 1.16× slowdown compared to a complete API. Finally, we also measure batch-insert throughput in dynamic-graph containers for a full picture of their performance. To perform the benchmarks, we introduce BYO, a unified framework that standardizes evaluations of graph-algorithm performance across different graph containers. BYO extends the Graph Based Benchmark Suite (Dhulipala et al. 18), a state-of-the-art graph algorithm benchmark, to easily plug into different dynamic graph containers and enable fair comparisons between them on a large suite of graph algorithms. While several graph algorithm benchmarks have been developed to date, to the best of our knowledge, BYO is the first system designed to benchmark graph containers. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2317194
- PAR ID:
- 10609057
- Publisher / Repository:
- Proceedings of the VLDB Endowment
- Date Published:
- Journal Name:
- Proceedings of the VLDB Endowment
- Volume:
- 17
- Issue:
- 9
- ISSN:
- 2150-8097
- Page Range / eLocation ID:
- 2307 to 2320
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Container systems (e.g., Docker) provide a well-defined, lightweight, and versatile foundation to streamline the process of tool deployment, to provide a consistent and repeatable experimental interface, and to leverage data centers in the global cloud infrastructure as measurement vantage points. However, the virtual network devices commonly used to connect containers to the Internet are known to impose latency overheads which distort the values reported by measurement tools running inside containers. In this study, we develop a tool called MACE to measure and remove the latency overhead of virtual network devices as used by Docker containers. A key insight of MACE is the fact that container functions all execute in the same kernel. Based on this insight, MACE is implemented as a Linux kernel module using the trace event subsystem to measure latency along the network stack code path. Using CloudLab, we evaluate MACE by comparing the ping measurements emitted from a slim-ping container to the ones emitted using the same tool running in the bare metal machine under varying traffic loads. Our evaluation shows that the MACE-adjusted RTT measurements are within 20 µs of the bare metal ping RTTs on average while incurring less than 25 µs RTT perturbation. We also compare RTT perturbation incurred by MACE with perturbation incurred by the built-in ftrace kernel tracing system and find that MACE incurs less perturbation.more » « less
- 
            Evaluations—encompassing computational evaluations, benchmarks and user studies—are essential tools for validating the performance and applicability of graph and network layout algorithms (also known as graph drawing). These evaluations not only offer significant insights into an algorithm's performance and capabilities, but also assist the reader in determining if the algorithm is suitable for a specific purpose, such as handling graphs with a high volume of nodes or dense graphs. Unfortunately, there is no standard approach for evaluating layout algorithms. Prior work holds a ‘Wild West’ of diverse benchmark datasets and data characteristics, as well as varied evaluation metrics and ways to report results. It is often difficult to compare layout algorithms without first implementing them and then running your own evaluation. In this systematic review, we delve into the myriad of methodologies employed to conduct evaluations—the utilized techniques, reported outcomes and the pros and cons of choosing one approach over another. Our examination extends beyond computational evaluations, encompassing user‐centric evaluations, thus presenting a comprehensive understanding of algorithm validation. This systematic review—and its accompanying website—guides readers through evaluation types, the types of results reported, and the available benchmark datasets and their data characteristics. Our objective is to provide a valuable resource for readers to understand and effectively apply various evaluation methods for graph layout algorithms. A free copy of this paper and all supplemental material is available at osf.io, and the categorized papers are accessible on our website at https://visdunneright.github.io/gd-comp-eval/more » « less
- 
            In order to generate efficient code, dynamic language compilers often need information, such as dynamic types, not readily available in the program source. Leveraging a mixture of static and dynamic information, these compilers speculate on the missing information. Within one compilation unit, they specialize the generated code to the previously observed behaviors, betting that past is prologue. When speculation fails, the execution must jump back to unoptimized code. In this paper, we propose an approach to further the specialization, by disentangling classes of behaviors into separate optimization units. With contextual dispatch, functions are versioned and each version is compiled under different assumptions. When a function is invoked, the implementation dispatches to a version optimized under assumptions matching the dynamic context of the call. As a proof-of-concept, we describe a compiler for the R language which uses this approach. Our implementation is, on average, 1.7× faster than the GNU R reference implementation. We evaluate contextual dispatch on a set of benchmarks and measure additional speedup, on top of traditional speculation with deoptimization techniques. In this setting contextual dispatch improves the performance of 18 out of 46 programs in our benchmark suite.more » « less
- 
            Identifying key members in large social network graphs is an important graph analytic. Recently, a new centrality measure called triangle centrality finds members based on the triangle support of vertices in graph. In this paper, we describe our rapid implementation of triangle centrality using Graph-BLAS, an API specification for describing graph algorithms in the language of linear algebra. We use triangle centrality’s algebraic algorithm and easily implement it using the SuiteSparse GraphBLAS library. A set of experiments on large, sparse graph datasets is conducted to verify the implementation.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    