skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Functional regimes define the response of the soil microbiome to environmental change
Abstract The metabolic activity of soil microbiomes plays a central role in carbon and nitrogen cycling. Given the changing climate, it is important to understand how the metabolism of natural communities responds to environmental change. However, the ecological, spatial, and chemical complexity of soils makes understanding the mechanisms governing the response of these communities to perturbations challenging. Here, we overcome this complexity by using dynamic measurements of metabolism in microcosms and modeling to reveal regimes where a few key mechanisms govern the response of soils to environmental change. We sample soils along a natural pH gradient, construct >1500 microcosms to perturb the pH, and quantify the dynamics of respiratory nitrate utilization, a key process in the nitrogen cycle. Despite the complexity of the soil microbiome, a minimal mathematical model with two variables, the quantity of active biomass in the community and the availability of a growth-limiting nutrient, quantifies observed nitrate utilization dynamics across soils and pH perturbations. Across environmental perturbations, changes in these two variables give rise to three functional regimes each with qualitatively distinct dynamics of nitrate utilization over time: a regime where acidic perturbations induce cell death that limits metabolic activity, a nutrientlimiting regime where nitrate uptake is performed by dominant taxa that utilize nutrients released from the soil matrix, and a resurgent growth regime in basic conditions, where excess nutrients enable growth of initially rare taxa. The underlying mechanism of each regime is predicted by our interpretable model and tested via amendment experiments, nutrient measurements, and sequencing. Further, our data suggest that the long-term history of environmental variation in the wild influences the transitions between functional regimes. Therefore, quantitative measurements and a mathematical model reveal the existence of qualitative regimes that capture the mechanisms and dynamics of a community responding to environmental change.  more » « less
Award ID(s):
2235451
PAR ID:
10609132
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
bioRxiv
Date Published:
Format(s):
Medium: X
Institution:
bioRxiv
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Nitrous oxide (N2O), a greenhouse gas with ozone destruction potential, is mitigated by the microbial reduction to dinitrogen catalyzed by N2O reductase (NosZ). Bacteria with NosZ activity have been studied at circumneutral pH but the microbiology of low pH N2O reduction has remained elusive. Acidic (pH < 5) tropical forest soils were collected in the Luquillo Experimental Forest in Puerto Rico, and microcosms maintained with low (0.02 mM) and high (2 mM) N2O assessed N2O reduction at pH 4.5 and 7.3. All microcosms consumed N2O, with lag times of up to 7 months observed in microcosms with 2 mM N2O. Comparative metagenome analysis revealed that Rhodocyclaceae dominated in circumneutral microcosms under both N2O feeding regimes. At pH 4.5, Peptococcaceae dominated in high-N2O, and Hyphomicrobiaceae in low-N2O microcosms. Seventeen high-quality metagenome-assembled genomes (MAGs) recovered from the N2O-reducing microcosms harbored nos operons, with all eight MAGs derived from acidic microcosms carrying the Clade II type nosZ and lacking nitrite reductase genes (nirS/K). Five of the eight MAGs recovered from pH 4.5 microcosms represent novel taxa indicating an unexplored N2O-reducing diversity exists in acidic tropical soils. A survey of pH 3.5–5.7 soil metagenome datasets revealed that nosZ genes commonly occur, suggesting broad distribution of N2O reduction potential in acidic soils. 
    more » « less
  2. Abstract In dryland soils, spatiotemporal variation in surface soils (0–10 cm) plays an important role in the function of the “critical zone” that extends from canopy to groundwater. Understanding connections between soil microbes and biogeochemical cycling in surface soils requires repeated multivariate measurements of nutrients, microbial abundance, and microbial function. We examined these processes in resource islands and interspaces over a two‐month period at a Chihuahuan Desert bajada shrubland site. We collected soil inProsopis glandulosa(honey mesquite),Larrea tridentata(creosote bush), and unvegetated (interspace) areas to measure soil nutrient concentrations, microbial biomass, and potential soil enzyme activity. We monitored the dynamics of these belowground processes as soil conditions dried and then rewetted due to rainfall. Most measured variables, including inorganic nutrients, microbial biomass, and soil enzyme activities, were greater under shrubs during both wet and dry periods, with the highest magnitudes under mesquite followed by creosote bush and then interspace. One exception was nitrate, which was highly variable and did not show resource island patterns. Temporally, rainfall pulses were associated with substantial changes in soil nutrient concentrations, though resource island patterns remained consistent during all phases of the soil moisture pulse. Microbial biomass was more consistent than nutrients, decreasing only when soils were driest. Potential enzyme activities were even more consistent and did not decline in dry periods, potentially helping to stimulate observed pulses in CO2efflux following rain events observed at a co‐located eddy flux tower. These results indicate a critical zone with organic matter cycling patterns consistently elevated in shrub resource islands (which varied by shrub species), high decomposition potential that limits soil organic matter accumulation across the landscape, and nitrate fluxes that are decoupled from the organic matter pathways. 
    more » « less
  3. Abstract Permafrost underlies approximately one quarter of Northern Hemisphere terrestrial surfaces and contains 25–50% of the global soil carbon (C) pool. Permafrost soils and the C stocks within are vulnerable to ongoing and future projected climate warming. The biogeography of microbial communities inhabiting permafrost has not been examined beyond a small number of sites focused on local-scale variation. Permafrost is different from other soils. Perennially frozen conditions in permafrost dictate that microbial communities do not turn over quickly, thus possibly providing strong linkages to past environments. Thus, the factors structuring the composition and function of microbial communities may differ from patterns observed in other terrestrial environments. Here, we analyzed 133 permafrost metagenomes from North America, Europe, and Asia. Permafrost biodiversity and taxonomic distribution varied in relation to pH, latitude and soil depth. The distribution of genes differed by latitude, soil depth, age, and pH. Genes that were the most highly variable across all sites were associated with energy metabolism and C-assimilation. Specifically, methanogenesis, fermentation, nitrate reduction, and replenishment of citric acid cycle intermediates. This suggests that adaptations to energy acquisition and substrate availability are among some of the strongest selective pressures shaping permafrost microbial communities. The spatial variation in metabolic potential has primed communities for specific biogeochemical processes as soils thaw due to climate change, which could cause regional- to global- scale variation in C and nitrogen processing and greenhouse gas emissions. 
    more » « less
  4. Tringe, Susannah Green (Ed.)
    ABSTRACT Below-ground carbon transformations that contribute to healthy soils represent a natural climate change mitigation, but newly acquired traits adaptive to climate stress may alter microbial feedback mechanisms. To better define microbial evolutionary responses to long-term climate warming, we study microorganisms from an ongoingin situsoil warming experiment where, for over three decades, temperate forest soils are continuously heated at 5°C above ambient. We hypothesize that across generations of chronic warming, genomic signatures within diverse bacterial lineages reflect adaptations related to growth and carbon utilization. From our bacterial culture collection isolated from experimental heated and control plots, we sequenced genomes representing dominant taxa sensitive to warming, including lineages of Actinobacteria, Alphaproteobacteria, and Betaproteobacteria. We investigated genomic attributes and functional gene content to identify signatures of adaptation. Comparative pangenomics revealed accessory gene clusters related to central metabolism, competition, and carbon substrate degradation, with few functional annotations explicitly associated with long-term warming. Trends in functional gene patterns suggest genomes from heated plots were relatively enriched in central carbohydrate and nitrogen metabolism pathways, while genomes from control plots were relatively enriched in amino acid and fatty acid metabolism pathways. We observed that genomes from heated plots had less codon bias, suggesting potential adaptive traits related to growth or growth efficiency. Codon usage bias varied for organisms with similar 16Srrnoperon copy number, suggesting that these organisms experience different selective pressures on growth efficiency. Our work suggests the emergence of lineage-specific trends as well as common ecological-evolutionary microbial responses to climate change.IMPORTANCEAnthropogenic climate change threatens soil ecosystem health in part by altering below-ground carbon cycling carried out by microbes. Microbial evolutionary responses are often overshadowed by community-level ecological responses, but adaptive responses represent potential changes in traits and functional potential that may alter ecosystem function. We predict that microbes are adapting to climate change stressors like soil warming. To test this, we analyzed the genomes of bacteria from a soil warming experiment where soil plots have been experimentally heated 5°C above ambient for over 30 years. While genomic attributes were unchanged by long-term warming, we observed trends in functional gene content related to carbon and nitrogen usage and genomic indicators of growth efficiency. These responses may represent new parameters in how soil ecosystems feedback to the climate system. 
    more » « less
  5. The tropical Pacific is one of the largest ocean regions on Earth where the trace element iron limits new primary production and therefore the efficiency of carbon export to the deep sea. Although there is a long history of marine biogeochemical research in the tropical Pacific, recent advancements using GEOTRACES key parameters such as iron and nitrate isotopes (nitrate δ15N and δ18O) make this a good time to review the current understanding of tropical Pacific nitrate dynamics—how both regional subsurface nitrate characteristics and surface ocean nitrate utilization change with time. While this article provides a comprehensive overview of the biological, chemical, and physical processes shaping equatorial Pacific subsurface-to-surface nutrients, it principally explores the findings from the first nitrate isotope time series in iron-limited high nutrient, low chlorophyll waters. Results indicate that the preferential recycling of bioavailable iron within the euphotic zone is required to explain even the lowest observed nitrate utilization in the eastern equatorial Pacific (EEP). Furthermore, because seasonal-to-interannual nitrate utilization variability in the EEP cannot be driven by changes in iron supply, this work argues that iron recycling (and therefore bioavailable iron) is modulated by upwelling rate changes, creating a predicted and recently observed spectrum of iron limitation in the iron-limited EEP surface waters. In other words, upper ocean physics overwhelmingly dominates seasonal-to-interannual nitrate utilization in the iron-​limited EEP. This new understanding of nitrate utilization in iron-limited waters helps to explain long-term changes in past equatorial Pacific nitrate utilization obtained via sedimentary proxy records and potentially complicates the efficacy of future iron fertilization of the equatorial Pacific. 
    more » « less