skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Ziphius cavirostris presence relative to the vertical and temporal variability of oceanographic conditions in the Southern California Bight
Abstract The oceanographic conditions of the Southern California Bight (SCB) dictate the distribution and abundance of prey resources and therefore the presence of mobile predators, such as goose‐beaked whales (Ziphius cavirostris). Goose‐beaked whales are deep‐diving odontocetes that spend a majority of their time foraging at depth. Due to their cryptic behavior, little is known about how they respond to seasonal and interannual changes in their environment. This study utilizes passive acoustic data recorded from two sites within the SCB to explore the oceanographic conditions that goose‐beaked whales appear to favor. Utilizing optimum multiparameter analysis, modeled temperature and salinity data are used to identify and quantify these source waters: Pacific Subarctic Upper Water (PSUW), Pacific Equatorial Water (PEW), and Eastern North Pacific Central Water (ENPCW). The interannual and seasonal variability in goose‐beaked whale presence was related to the variability in El Niño Southern Oscillation events and the fraction and vertical distribution of the three source waters. Goose‐beaked whale acoustic presence was highest during the winter and spring and decreased during the late summer and early fall. These seasonal increases occurred at times of increased fractions of PEW in the California Undercurrent and decreased fractions of ENPCW in surface waters. Interannual increases in goose‐beaked whale presence occurred during El Niño events. These results establish a baseline understanding of the oceanographic characteristics that correlate with goose‐beaked whale presence in the SCB. Furthering our knowledge of this elusive species is key to understanding how anthropogenic activities impact goose‐beaked whales.  more » « less
Award ID(s):
2224726
PAR ID:
10609150
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Ecology and Evolution
Volume:
14
Issue:
7
ISSN:
2045-7758
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Decadal variations of ocean soundscapes are intricately linked to large-scale climatic and economic fluctuations. This study draws on over 15 years of acoustic recordings at six sites within the Southern California Bight, investigating interannual, seasonal, and diel variations. By examining acoustic energy from fin and blue whales along with sounds from ships and wind, we identified changes in soundscape over time and space. This study reveals that sound levels associated with both biological and non-biological sound sources varied seasonally and correlated with large-scale climatic patterns and long-term oceanographic fluctuations. Baleen whale sound levels before, during, and after a marine heatwave were assessed; sound levels decreased in southern sites and increased in northern sites adjacent to the California Current, underscoring the potential for range shifts and habitat compression during warm years for these species. Ship-generated sound levels at high-traffic sites reflected economic events such as recessions, labor shortages and negotiations, and changes to port activities. Marine soundscapes offer an approach to assess the ocean's condition amid ongoing climatic and economic fluctuations. 
    more » « less
  2. Abstract Killer whales ( Orcinus orca ) are top predators throughout the world’s oceans. In the North Pacific, the species is divided into three ecotypes—resident (fish-eating), transient (mammal-eating), and offshore (largely shark-eating)—that are genetically and acoustically distinct and have unique roles in the marine ecosystem. In this study, we examined the year-round distribution of killer whales in the northern Gulf of Alaska from 2016 to 2020 using passive acoustic monitoring. We further described the daily acoustic residency patterns of three killer whale populations (southern Alaska residents, Gulf of Alaska transients, and AT1 transients) for one year of these data. Highest year-round acoustic presence occurred in Montague Strait, with strong seasonal patterns in Hinchinbrook Entrance and Resurrection Bay. Daily acoustic residency times for the southern Alaska residents paralleled seasonal distribution patterns. The majority of Gulf of Alaska transient detections occurred in Hinchinbrook Entrance in spring. The depleted AT1 transient killer whale population was most often identified in Montague Strait. Passive acoustic monitoring revealed that both resident and transient killer whales used these areas much more extensively than previously known and provided novel insights into high use locations and times for each population. These results may be driven by seasonal foraging opportunities and social factors and have management implications for this species. 
    more » « less
  3. Abstract AimThis study investigates the biogeographic patterns of Pacific white‐sided dolphins (Lagenorhynchus obliquidens) in the Eastern North Pacific based on long‐term passive acoustic records. We aim to elucidate the ecological and behavioural significance of distinct echolocation click types and their implications for population delineation, geographic distribution, environmental adaptation and management. LocationEastern North Pacific Ocean. Time Period2005–2021. Major Taxa StudiedPacific white‐sided dolphin. MethodsOver 50 cumulative years of passive acoustic monitoring (PAM) data from 14 locations were analyzed using a deep neural network to classify two distinct Pacific white‐sided dolphin echolocation click types. The study assessed spatial, diel, seasonal and interannual patterns of the two click types, correlating them with major environmental drivers such as the El Niño Southern Oscillation and the North Pacific Gyre Oscillation, and modeling long‐term spatial‐seasonal patterns. ResultsDistinct spatial, diel and seasonal patterns were observed for each click type. Significant biogeographical shifts in presence were observed following the 2014–2016 marine heatwave event. Main ConclusionsDistinct spatial distributions of the two click types support the hypothesis that Pacific white‐sided dolphins produce population‐specific echolocation clicks. Seasonal and diel patterns suggest spatiotemporal niche partitioning between the populations in Southern California. Interannual changes, notably initiated during the 2014–2016 marine heatwave, indicate climate‐driven range expansions and contractions related to gradual tropicalization of the Southern California Bight. 
    more » « less
  4. Abstract BackgroundIn ecosystems influenced by strong seasonal variation in insolation, the fitness of diverse taxa depends on seasonal movements to track resources along latitudinal or elevational gradients. Deep pelagic ecosystems, where sunlight is extremely limited, represent Earth’s largest habitable space and yet ecosystem phenology and effective animal movement strategies in these systems are little understood. Sperm whales (Physeter macrocephalus) provide a valuable acoustic window into this world: the echolocation clicks they produce while foraging in the deep sea are the loudest known biological sounds on Earth and convey detailed information about their behavior. MethodsWe analyze seven years of continuous passive acoustic observations from the Central California Current System, using automated methods to identify both presence and demographic information from sperm whale echolocation clicks. By integrating empirical results with individual-level movement simulations, we test hypotheses about the movement strategies underlying sperm whales’ long-distance movements in the Northeast Pacific. ResultsWe detect foraging sperm whales of all demographic groups year-round in the Central California Current System, but also identify significant seasonality in frequency of presence. Among several previously hypothesized movement strategies for this population, empirical acoustic observations most closely match simulated results from a population undertaking a “seasonal resource-tracking migration”, in which individuals move to track moderate seasonal-latitudinal variation in resource availability. DiscussionOur findings provide evidence for seasonal movements in this cryptic top predator of the deep sea. We posit that these seasonal movements are likely driven by tracking of deep-sea resources, based on several lines of evidence: (1) seasonal-latitudinal patterns in foraging sperm whale detection across the Northeast Pacific; (2) lack of demographic variation in seasonality of presence; and (3) the match between simulations of seasonal resource-tracking migration and empirical results. We show that sperm whales likely track oceanographic seasonality in a manner similar to many surface ocean predators, but with dampened seasonal-latitudinal movement patterns. These findings shed light on the drivers of sperm whales’ long-distance movements and the shrouded phenology of the deep-sea ecosystems in which they forage. 
    more » « less
  5. Abstract This study investigates variability of the South Pacific western subtropical mode water (SPWSTMW), its physical processes, and relationship with El Niño‐Southern Oscillation (ENSO), using a gridded Argo data product from January 2004 to September 2019. On seasonal timescale, the SPWSTMW volume shows a significant variability, which involves three periods: the formation period (June–October), the isolation period (November–February), and the dissipation period (March–May). This seasonal variability is related to seasonal fluctuation of the mixed layer depth. During the Argo period from 2004 to 2019, interannual variability of the SPWSTMW volume is tightly linked to the ENSO, increasing during El Niño periods and decreasing during La Niña periods. Further analyses indicate that ENSO‐related anomalous winds are primarily responsible for interannual variability of the SPWSTMW volume. The anomalous winds first influence the surface heat flux through evaporation and then the mixed layer depth through convection, leaving an imprint of ENSO on the SPWSTMW. This study also shows that the SPWSTMW responds differently to the central Pacific (CP) El Niño and eastern Pacific (EP) El Niño. 
    more » « less