skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Passive acoustic monitoring of killer whales (Orcinus orca) reveals year-round distribution and residency patterns in the Gulf of Alaska
Abstract Killer whales ( Orcinus orca ) are top predators throughout the world’s oceans. In the North Pacific, the species is divided into three ecotypes—resident (fish-eating), transient (mammal-eating), and offshore (largely shark-eating)—that are genetically and acoustically distinct and have unique roles in the marine ecosystem. In this study, we examined the year-round distribution of killer whales in the northern Gulf of Alaska from 2016 to 2020 using passive acoustic monitoring. We further described the daily acoustic residency patterns of three killer whale populations (southern Alaska residents, Gulf of Alaska transients, and AT1 transients) for one year of these data. Highest year-round acoustic presence occurred in Montague Strait, with strong seasonal patterns in Hinchinbrook Entrance and Resurrection Bay. Daily acoustic residency times for the southern Alaska residents paralleled seasonal distribution patterns. The majority of Gulf of Alaska transient detections occurred in Hinchinbrook Entrance in spring. The depleted AT1 transient killer whale population was most often identified in Montague Strait. Passive acoustic monitoring revealed that both resident and transient killer whales used these areas much more extensively than previously known and provided novel insights into high use locations and times for each population. These results may be driven by seasonal foraging opportunities and social factors and have management implications for this species.  more » « less
Award ID(s):
1757348
PAR ID:
10336369
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Scientific Reports
Volume:
11
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Bowhead whales migrate through the Bering Strait every spring to feed on large amounts of zooplankton that grow in the Chukchi and Beaufort Seas. As the Arctic warms, there is evidence that some whales might be spending winter on their summer feeding grounds. Changes to migration could impact breeding and increase competition, killer whale attacks, and ship strike risk. Bowhead whales play an important role in the marine ecosystem and are vital to Native Alaskan communities. Bowhead whale habitat can be hard to access. However, bowhead whales vocalize, providing an opportunity to use passive acoustic monitoring to study their movement. The project combines bowhead whale calls with sea ice data to identify the drivers of migration and changes to migration. 
    more » « less
  2. Abstract The oceanographic conditions of the Southern California Bight (SCB) dictate the distribution and abundance of prey resources and therefore the presence of mobile predators, such as goose‐beaked whales (Ziphius cavirostris). Goose‐beaked whales are deep‐diving odontocetes that spend a majority of their time foraging at depth. Due to their cryptic behavior, little is known about how they respond to seasonal and interannual changes in their environment. This study utilizes passive acoustic data recorded from two sites within the SCB to explore the oceanographic conditions that goose‐beaked whales appear to favor. Utilizing optimum multiparameter analysis, modeled temperature and salinity data are used to identify and quantify these source waters: Pacific Subarctic Upper Water (PSUW), Pacific Equatorial Water (PEW), and Eastern North Pacific Central Water (ENPCW). The interannual and seasonal variability in goose‐beaked whale presence was related to the variability in El Niño Southern Oscillation events and the fraction and vertical distribution of the three source waters. Goose‐beaked whale acoustic presence was highest during the winter and spring and decreased during the late summer and early fall. These seasonal increases occurred at times of increased fractions of PEW in the California Undercurrent and decreased fractions of ENPCW in surface waters. Interannual increases in goose‐beaked whale presence occurred during El Niño events. These results establish a baseline understanding of the oceanographic characteristics that correlate with goose‐beaked whale presence in the SCB. Furthering our knowledge of this elusive species is key to understanding how anthropogenic activities impact goose‐beaked whales. 
    more » « less
  3. Abstract In a rapidly changing Arctic, multiple lines of evidence suggest that bowhead whale migration is changing. To explore these changes further, we used passive acoustic data to examine bowhead whale presence in the western Beaufort Sea (12 years) and Chukchi Plateau (11 years) spanning 2008 to 2022. Departure from the western Beaufort Sea shifted 45 days later over the 12‐year period. Summer presence increased at both sites, suggesting feeding areas within the Chukchi Sea are becoming more favorable. Likewise, findings from the Bering Strait suggest that some whales are remaining north of the Bering Strait for the winter instead of in the Bering Sea. These Pacific Arctic‐wide changes to migration have occurred over only one decade. Questions remain about prey availability in the Chukchi Sea, implications of migratory changes, such as a northward shift in the core overwintering area, and impact to communities south of the Bering Strait. 
    more » « less
  4. Abstract BackgroundClimate change is warming the Arctic faster than the rest of the planet. Shifts in whale migration timing have been linked to climate change in temperate and sub-Arctic regions, and evidence suggests Bering–Chukchi–Beaufort (BCB) bowhead whales (Balaena mysticetus) might be overwintering in the Canadian Beaufort Sea. MethodsWe used an 11-year timeseries (spanning 2009–2021) of BCB bowhead whale presence in the southern Chukchi Sea (inferred from passive acoustic monitoring) to explore relationships between migration timing and sea ice in the Chukchi and Bering Seas. ResultsFall southward migration into the Bering Strait was delayed in years with less mean October Chukchi Sea ice area and earlier in years with greater sea ice area (p = 0.04, r2 = 0.40). Greater mean October–December Bering Sea ice area resulted in longer absences between whales migrating south in the fall and north in the spring (p < 0.01, r2 = 0.85). A stepwise shift after 2012–2013 shows some whales are remaining in southern Chukchi Sea rather than moving through the Bering Strait and into the northwestern Bering Sea for the winter. Spring northward migration into the southern Chukchi Sea was earlier in years with less mean January–March Chukchi Sea ice area and delayed in years with greater sea ice area (p < 0.01, r2 = 0.82). ConclusionsAs sea ice continues to decline, northward spring-time migration could shift earlier or more bowhead whales may overwinter at summer feeding grounds. Changes to bowhead whale migration could increase the overlap with ships and impact Indigenous communities that rely on bowhead whales for nutritional and cultural subsistence. 
    more » « less
  5. Abstract BackgroundIn ecosystems influenced by strong seasonal variation in insolation, the fitness of diverse taxa depends on seasonal movements to track resources along latitudinal or elevational gradients. Deep pelagic ecosystems, where sunlight is extremely limited, represent Earth’s largest habitable space and yet ecosystem phenology and effective animal movement strategies in these systems are little understood. Sperm whales (Physeter macrocephalus) provide a valuable acoustic window into this world: the echolocation clicks they produce while foraging in the deep sea are the loudest known biological sounds on Earth and convey detailed information about their behavior. MethodsWe analyze seven years of continuous passive acoustic observations from the Central California Current System, using automated methods to identify both presence and demographic information from sperm whale echolocation clicks. By integrating empirical results with individual-level movement simulations, we test hypotheses about the movement strategies underlying sperm whales’ long-distance movements in the Northeast Pacific. ResultsWe detect foraging sperm whales of all demographic groups year-round in the Central California Current System, but also identify significant seasonality in frequency of presence. Among several previously hypothesized movement strategies for this population, empirical acoustic observations most closely match simulated results from a population undertaking a “seasonal resource-tracking migration”, in which individuals move to track moderate seasonal-latitudinal variation in resource availability. DiscussionOur findings provide evidence for seasonal movements in this cryptic top predator of the deep sea. We posit that these seasonal movements are likely driven by tracking of deep-sea resources, based on several lines of evidence: (1) seasonal-latitudinal patterns in foraging sperm whale detection across the Northeast Pacific; (2) lack of demographic variation in seasonality of presence; and (3) the match between simulations of seasonal resource-tracking migration and empirical results. We show that sperm whales likely track oceanographic seasonality in a manner similar to many surface ocean predators, but with dampened seasonal-latitudinal movement patterns. These findings shed light on the drivers of sperm whales’ long-distance movements and the shrouded phenology of the deep-sea ecosystems in which they forage. 
    more » « less