skip to main content


Title: Passive acoustic monitoring of killer whales (Orcinus orca) reveals year-round distribution and residency patterns in the Gulf of Alaska
Abstract Killer whales ( Orcinus orca ) are top predators throughout the world’s oceans. In the North Pacific, the species is divided into three ecotypes—resident (fish-eating), transient (mammal-eating), and offshore (largely shark-eating)—that are genetically and acoustically distinct and have unique roles in the marine ecosystem. In this study, we examined the year-round distribution of killer whales in the northern Gulf of Alaska from 2016 to 2020 using passive acoustic monitoring. We further described the daily acoustic residency patterns of three killer whale populations (southern Alaska residents, Gulf of Alaska transients, and AT1 transients) for one year of these data. Highest year-round acoustic presence occurred in Montague Strait, with strong seasonal patterns in Hinchinbrook Entrance and Resurrection Bay. Daily acoustic residency times for the southern Alaska residents paralleled seasonal distribution patterns. The majority of Gulf of Alaska transient detections occurred in Hinchinbrook Entrance in spring. The depleted AT1 transient killer whale population was most often identified in Montague Strait. Passive acoustic monitoring revealed that both resident and transient killer whales used these areas much more extensively than previously known and provided novel insights into high use locations and times for each population. These results may be driven by seasonal foraging opportunities and social factors and have management implications for this species.  more » « less
Award ID(s):
1757348
NSF-PAR ID:
10336369
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Scientific Reports
Volume:
11
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Background

    Climate change is warming the Arctic faster than the rest of the planet. Shifts in whale migration timing have been linked to climate change in temperate and sub-Arctic regions, and evidence suggests Bering–Chukchi–Beaufort (BCB) bowhead whales (Balaena mysticetus) might be overwintering in the Canadian Beaufort Sea.

    Methods

    We used an 11-year timeseries (spanning 2009–2021) of BCB bowhead whale presence in the southern Chukchi Sea (inferred from passive acoustic monitoring) to explore relationships between migration timing and sea ice in the Chukchi and Bering Seas.

    Results

    Fall southward migration into the Bering Strait was delayed in years with less mean October Chukchi Sea ice area and earlier in years with greater sea ice area (p = 0.04, r2 = 0.40). Greater mean October–December Bering Sea ice area resulted in longer absences between whales migrating south in the fall and north in the spring (p < 0.01, r2 = 0.85). A stepwise shift after 2012–2013 shows some whales are remaining in southern Chukchi Sea rather than moving through the Bering Strait and into the northwestern Bering Sea for the winter. Spring northward migration into the southern Chukchi Sea was earlier in years with less mean January–March Chukchi Sea ice area and delayed in years with greater sea ice area (p < 0.01, r2 = 0.82).

    Conclusions

    As sea ice continues to decline, northward spring-time migration could shift earlier or more bowhead whales may overwinter at summer feeding grounds. Changes to bowhead whale migration could increase the overlap with ships and impact Indigenous communities that rely on bowhead whales for nutritional and cultural subsistence.

     
    more » « less
  2. Abstract

    Declines in Arctic sea ice cover are influencing the distribution of protected endemic marine mammals, many of which are important for local Indigenous Peoples, and increasing the presence of potentially disruptive industrial activities. Due to increasing conservation concerns, we conducted the first year‐round acoustic monitoring of waters off Gambell and Savoonga (St. Lawrence Island, Alaska), and in the Bering Strait to quantify vocalizing presence of bowhead whales, belugas, walruses, bearded seals, and ribbon seals. Bottom‐mounted archival acoustic recorders collected data for up to 10 months per deployment between 2012 and 2016. Spectrograms were analyzed for species‐typical vocalizations, and daily detection rates and presence/absence were calculated. Generalized additive models were used to model call presence as a function of time‐of‐year, sea surface temperature, and sea ice concentration. We identified seasonality in call presence for all species, corroborating previous acoustic and distribution studies, and identified finer‐scale spatiotemporal distribution via occurrence of call presence between different monitoring sites. Time‐of‐year was the strongest significant effect on call presence for all species. These data provide important information on Arctic endemic species' spatiotemporal distributions in biologically and culturally important areas within a rapidly changing Arctic region.

     
    more » « less
  3. Ummenhofer, Caroline (Ed.)
    Changes in gray whale ( Eschrichtius robustus ) phenology and distribution are related to observed and hypothesized prey availability, bottom water temperature, salinity, sea ice persistence, integrated water column and sediment chlorophyll a , and patterns of wind-driven biophysical forcing in the northern Bering and eastern Chukchi seas. This portion of the Pacific Arctic includes four Distributed Biological Observatory (DBO) sampling regions. In the Bering Strait area, passive acoustic data showed marked declines in gray whale calling activity coincident with unprecedented wintertime sea ice loss there in 2017–2019, although some whales were seen there during DBO cruises in those years. In the northern Bering Sea, sightings during DBO cruises show changes in gray whale distribution coincident with a shrinking field of infaunal amphipods, with a significant decrease in prey abundance (r = -0.314, p<0.05) observed in the DBO 2 region over the 2010–2019 period. In the eastern Chukchi Sea, sightings during broad scale aerial surveys show that gray whale distribution is associated with localized areas of high infaunal crustacean abundance. Although infaunal crustacean prey abundance was unchanged in DBO regions 3, 4 and 5, a mid-decade shift in gray whale distribution corresponded to both: (i) a localized increase in infaunal prey abundance in DBO regions 4 and 5, and (ii) a correlation of whale relative abundance with wind patterns that can influence epi-benthic and pelagic prey availability. Specifically, in the northeastern Chukchi Sea, increased sighting rates (whales/km) associated with an ~110 km (60 nm) offshore shift in distribution was positively correlated with large scale and local wind patterns conducive to increased availability of krill. In the southern Chukchi Sea, gray whale distribution clustered in all years near an amphipod-krill ‘hotspot’ associated with a 50-60m deep trough. We discuss potential impacts of observed and inferred prey shifts on gray whale nutrition in the context of an ongoing unusual gray whale mortality event. To conclude, we use the conceptual Arctic Marine Pulses (AMP) model to frame hypotheses that may guide future research on whales in the Pacific Arctic marine ecosystem. 
    more » « less
  4. Humpback whale behavior, population distribution and structure can be inferred from long term underwater passive acoustic monitoring of their vocalizations. Here we develop automatic approaches for classifying humpback whale vocalizations into the two categories of song and non-song, employing machine learning techniques. The vocalization behavior of humpback whales was monitored over instantaneous vast areas of the Gulf of Maine using a large aperture coherent hydrophone array system via the passive ocean acoustic waveguide remote sensing technique over multiple diel cycles in Fall 2006. We use wavelet signal denoising and coherent array processing to enhance the signal-to-noise ratio. To build features vector for every time sequence of the beamformed signals, we employ Bag of Words approach to time-frequency features. Finally, we apply Support Vector Machine (SVM), Neural Networks, and Naive Bayes to classify the acoustic data and compare their performances. Best results are obtained using Mel Frequency Cepstrum Coefficient (MFCC) features and SVM which leads to 94% accuracy and 72.73% F1-score for humpback whale song versus non-song vocalization classification, showing effectiveness of the proposed approach for real-time classification at sea. 
    more » « less
  5. Synopsis

    Species ecology and life history patterns are often reflected in animal morphology. Blue whales are globally distributed, with distinct populations that feed in different productive coastal regions worldwide. Thus, they provide an opportunity to investigate how regional ecosystem characteristics may drive morphological differences within a species. Here, we compare physical and biological oceanography of three different blue whale foraging grounds: (1) Monterey Bay, California, USA; (2) the South Taranaki Bight (STB), Aotearoa New Zealand; and (3) the Corcovado Gulf, Chile. Additionally, we compare the morphology of blue whales from these regions using unoccupied aircraft imagery. Monterey Bay and the Corcovado Gulf are seasonally productive and support the migratory life history strategy of the Eastern North Pacific (ENP) and Chilean blue whale populations, respectively. In contrast, the New Zealand blue whale population remains in the less productive STB year-round. All three populations were indistinguishable in total body length. However, New Zealand blue whales were in significantly higher body condition despite lower regional productivity, potentially attributable to their non-migratory strategy that facilitates lower risk of spatiotemporal misalignment with more consistently available foraging opportunities. Alternatively, the migratory strategy of the ENP and Chilean populations may be successful when their presence on the foraging grounds temporally aligns with abundant prey availability. We document differences in skull and fluke morphology between populations, which may relate to different feeding behaviors adapted to region-specific prey and habitat characteristics. These morphological features may represent a trade-off between maneuverability for prey capture and efficient long-distance migration. As oceanographic patterns shift relative to long-term means under climate change, these blue whale populations may show different vulnerabilities due to differences in migratory phenology and feeding behavior between regions.

    Spanish abstract La ecología y patrones de historia de vida de las especies a menudo se reflejan en la morfología animal. Las ballenas azules están distribuidas globalmente, con poblaciones separadas que se alimentan en diferentes regiones costeras productivas de todo el mundo. Por lo tanto, brindan la oportunidad de investigar cómo las características regionales de los ecosistemas pueden impulsar diferencias morfológicas dentro de una especie. Aquí, comparamos la oceanografía física y biológica de tres zonas de alimentación diferentes de la ballena azul: (1) Bahía de Monterey, California, EE. UU., (2) Bahía del sur de Taranaki (BST), Nueva Zelanda, y (3) Golfo de Corcovado, Chile. Adicionalmente, comparamos la morfología de las ballenas azules de estas regiones utilizando imágenes de aeronaves no tripuladas. La Bahía de Monterey y el Golfo de Corcovado son estacionalmente productivos y apoyan la estrategia migratoria de la historia de vida de las poblaciones de ballena azul chilena y del Pacífico Norte Oriental (PNO), respectivamente. Por el contrario, la población de ballena azul de Nueva Zelanda permanece en la menos productiva BST durante todo el año. Las tres poblaciones eran indistinguibles en cuanto a la longitud corporal total. Sin embargo, las ballenas azules de Nueva Zelanda tenían una condición corporal significativamente mayor a pesar de una menor productividad regional, potencialmente atribuible a su estrategia no migratoria que facilita un menor riesgo de desalineación espaciotemporal con oportunidades de alimentación disponibles de manera más consistente. Alternativamente, la estrategia migratoria de las poblaciones de ballenas PNO y chilena puede tener éxito cuando su presencia en las zonas de alimentación se alinea temporalmente con la abundante disponibilidad de presas. Documentamos diferencias en la morfología del cráneo y la aleta caudal entre poblaciones, que pueden estar relacionadas con diferentes comportamientos de alimentación adaptados a las características de hábitat y presas específicas para cada región. Estas características morfológicas pueden representar una compensación entre la maniobrabilidad para la captura de presas y una migración eficiente a larga distancia. A medida que los patrones oceanográficos cambian en términos de mediano a largo plazo debido al cambio climático, estas poblaciones de ballenas azules pueden mostrar diferentes vulnerabilidades debido a diferencias en la fenología migratoria y el comportamiento de alimentación entre regiones.

     
    more » « less