Molecules under strong or ultra-strong light–matter coupling present an intriguing route to modify chemical structure, properties, and reactivity. A rigorous theoretical treatment of such systems requires handling matter and photon degrees of freedom on an equal quantum mechanical footing. In the regime of molecular electronic strong or ultra-strong coupling to one or a few molecules, it is desirable to treat the molecular electronic degrees of freedom using the tools of ab initio quantum chemistry, yielding an approach referred to as ab initio cavity quantum electrodynamics (ai-QED), where the photon degrees of freedom are treated at the level of cavity QED. We analyze two complementary approaches to ai-QED: (1) a parameterized ai-QED, a two-step approach where the matter degrees of freedom are computed using existing electronic structure theories, enabling the construction of rigorous ai-QED Hamiltonians in a basis of many-electron eigenstates, and (2) self-consistent ai-QED, a one-step approach where electronic structure methods are generalized to include coupling between electronic and photon degrees of freedom. Although these approaches are equivalent in their exact limits, we identify a disparity between the projection of the two-body dipole self-energy operator that appears in the parameterized approach and its exact counterpart in the self-consistent approach. We provide a theoretical argument that this disparity resolves only under the limit of a complete orbital basis and a complete many-electron basis for the projection. We present numerical results highlighting this disparity and its resolution in a particularly simple molecular system of helium hydride cation, where it is possible to approach these two complete basis limits simultaneously. In this same helium hydride system, we examine and compare the practical issue of the computational cost required to converge each approach toward the complete orbital and many-electron bases limit. Finally, we assess the aspect of photonic convergence for polar and charged species, finding comparable behavior between parameterized and self-consistent approaches.
more »
« less
This content will become publicly available on December 1, 2025
Compression theory for inhomogeneous systems
Abstract The physics of complex systems stands to greatly benefit from the qualitative changes in data availability and advances in data-driven computational methods. Many of these systems can be represented by interacting degrees of freedom on inhomogeneous graphs. However, the lack of translational invariance presents a fundamental challenge to theoretical tools, such as the renormalization group, which were so successful in characterizing the universal physical behaviour in critical phenomena. Here we show that compression theory allows the extraction of relevant degrees of freedom in arbitrary geometries, and the development of efficient numerical tools to build an effective theory from data. We demonstrate our method by applying it to a strongly correlated system on an Ammann-Beenker quasicrystal, where it discovers an exotic critical point with broken conformal symmetry. We also apply it to an antiferromagnetic system on non-bipartite random graphs, where any periodicity is absent.
more »
« less
- Award ID(s):
- 2235451
- PAR ID:
- 10609183
- Publisher / Repository:
- Nature
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 15
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We study quantum decoherence numerically in a system consisting of a relativistic quantum field theory coupled to a measuring device that is itself coupled to an environment. The measuring device and environment are treated as quantum, non-relativistic particles. We solve the Schrödinger equation for the wave function of this tripartite system using exact diagonalization. Although computational limitations on the size of the Hilbert space prevent us from exploring the regime where the device and environment consist of a truly macroscopic number of degrees of freedom, we nevertheless see clear evidence of decoherence: after tracing out the environment, the density matrix describing the system and measuring device evolves quickly towards a matrix that is close to diagonal in a subspace of pointer states. We measure the speed with which decoherence spreads in the relativistic quantum field theory for a range of parameters. We find that it is less than the speed of light but faster than the speed of the massive charges in the initial state.more » « less
-
Abstract In broadband quantum optical systems, nonlinear interactions among a large number of frequency components induce complex dynamics that may defy heuristic analysis. In this work we introduce a perturbative framework for factoring out reservoir degrees of freedom and establishing a concise effective model (effective field theory) for the remaining system. Our approach combines approximate diagonalization of judiciously partitioned subsystems with master equation techniques. We consider cascaded optical (quadratic) nonlinearities as an example and show that the dynamics can be construed (to leading order) as self-phase modulations of dressed fundamental modes plus cross-phase modulations of dressed fundamental and second-harmonic modes. We then formally eliminate the second-harmonic degrees of freedom and identify emergent features of the fundamental wave dynamics, such as two-photon loss channels, and examine conditions for accuracy of the reduced model in dispersive and dissipative parameter regimes. Our results highlight the utility of system-reservoir methods for deriving accurate, intuitive reduced models for complex dynamics in broadband nonlinear quantum photonics, and may help guide quantum technological proposals in emerging systems where quantum effects become significant at the single-photon level.more » « less
-
Significance Physical phenomena can often be described by surprisingly few order parameters. Unfortunately, it is challenging to identify these essential degrees of freedom. Here we develop a statistical physics framework for exploring the landscape of order parameters, or coarse-grained representations, for a microscopic protein model. We employ Monte Carlo methods to statistically characterize this landscape. We define metrics assessing the intrinsic quality of each representation for preserving the configurational information and large-scale motions of the underlying microscopic model. Interestingly, these metrics are anticorrelated in low-resolution representations. Moreover, below a critical resolution, a phase transition qualitatively distinguishes superior and inferior representations. Finally, we relate our work to recent approaches for clustering graphs and detecting communities in networks.more » « less
-
Summary This article develops an algebraic multigrid (AMG) method for solving systems of elliptic boundary‐value problems. It is well known that multigrid for systems of elliptic equations faces many challenges that do not arise for most scalar equations. These challenges include strong intervariable couplings, multidimensional and possibly large near‐nullspaces, analytically unknown near‐nullspaces, delicate selection of coarse degrees of freedom (CDOFs), and complex construction of intergrid operators. In this article, we consider only the selection of CDOFs and the construction of the interpolation operator. The selection is an extension of the Ruge–Stuben algorithm using a new strength of connection measure taken between nodal degrees of freedom, that is, between all degrees of freedom located at a gridpoint to all degrees of freedom at another gridpoint. This measure is based on a local correlation matrix generated for a set of smoothed test vectors derived from a relaxation‐based procedure. With this measure, selection of the CDOFs is then determined by the number of strongly correlated connections at each node, with the selection processed by a Ruge–Stuben coloring scheme. Having selected the CDOFs, the interpolation operator is constructed using a bootstrap AMG (BAMG) procedure. We apply the BAMG procedure either over the smoothed test vectors to obtain an intervariable interpolation scheme or over the like‐variable components of the smoothed test vectors to obtain an intravariable interpolation scheme. Moreover, comparing the correlation measured between the intravariable couplings with the correlation between all couplings, a mixed intravariable and intervariable interpolation scheme is developed. We further examine an indirect BAMG method that explicitly uses the coefficients of the system operator in constructing the interpolation weights. Finally, based on a weak approximation criterion, we consider a simple scheme to adapt the order of the interpolation (i.e., adapt the caliber or maximum number of coarse‐grid points that a fine‐grid point can interpolate from) over the computational domain.more » « less
An official website of the United States government
