Simulations of soft materials often adopt low-resolution coarse-grained (CG) models. However, the CG representation is not unique and its impact upon simulated properties is poorly understood. In this work, we investigate the space of CG representations for ubiquitin, which is a typical globular protein with 72 amino acids. We employ Monte Carlo methods to ergodically sample this space and to characterize its landscape. By adopting the Gaussian network model as an analytically tractable atomistic model for equilibrium fluctuations, we exactly assess the intrinsic quality of each CG representation without introducing any approximations in sampling configurations or in modeling interactions. We focus on two metrics, the spectral quality and the information content, that quantify the extent to which the CG representation preserves low-frequency, large-amplitude motions and configurational information, respectively. The spectral quality and information content are weakly correlated among high-resolution representations but become strongly anticorrelated among low-resolution representations. Representations with maximal spectral quality appear consistent with physical intuition, while low-resolution representations with maximal information content do not. Interestingly, quenching studies indicate that the energy landscape of mapping space is very smooth and highly connected. Moreover, our study suggests a critical resolution below which a “phase transition” qualitatively distinguishes good and bad representations. 
                        more » 
                        « less   
                    
                            
                            Exploring the landscape of model representations
                        
                    
    
            Significance Physical phenomena can often be described by surprisingly few order parameters. Unfortunately, it is challenging to identify these essential degrees of freedom. Here we develop a statistical physics framework for exploring the landscape of order parameters, or coarse-grained representations, for a microscopic protein model. We employ Monte Carlo methods to statistically characterize this landscape. We define metrics assessing the intrinsic quality of each representation for preserving the configurational information and large-scale motions of the underlying microscopic model. Interestingly, these metrics are anticorrelated in low-resolution representations. Moreover, below a critical resolution, a phase transition qualitatively distinguishes superior and inferior representations. Finally, we relate our work to recent approaches for clustering graphs and detecting communities in networks. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10191926
- Publisher / Repository:
- Proceedings of the National Academy of Sciences
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 117
- Issue:
- 39
- ISSN:
- 0027-8424
- Format(s):
- Medium: X Size: p. 24061-24068
- Size(s):
- p. 24061-24068
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Plants and their insect herbivores have been a dominant component of the terrestrial ecological landscape for the past 410 million years and feature intricate evolutionary patterns and co‐dependencies. A complex systems perspective allows for both detailed resolution of these evolutionary relationships as well as comparison and synthesis across systems. Using proxy data of insect herbivore damage (denoted by the damage type or DT) preserved on fossil leaves, functional bipartite network representations provide insights into how plant–insect associations depend on geological time, paleogeographical space, and environmental variables such as temperature and precipitation. However, the metrics measured from such networks are prone to sampling bias. Such sensitivity is of special concern for plant–DT association networks in paleontological settings where sampling effort is often severely limited. Here, we explore the sensitivity of functional bipartite network metrics to sampling intensity and identify sampling thresholds above which metrics appear robust to sampling effort. Across a broad range of sampling efforts, we find network metrics to be less affected by sampling bias and/or sample size than richness metrics, which are routinely used in studies of fossil plant–DT interactions. These results provide reassurance that cross‐comparisons of plant–DT networks offer insights into network structure and function and support their widespread use in paleoecology. Moreover, these findings suggest novel opportunities for using plant–DT networks in neontological terrestrial ecology to understand functional aspects of insect herbivory across geological time, environmental perturbations, and geographic space.more » « less
- 
            Despite considerable community effort, there is no general set of equations to model long‐term landscape evolution. In order to determine a suitable set of landscape evolution process laws for a site where postglacial erosion has incised valleys up to 50 m deep, we generate a set of alternative models and perform a multimodel analysis. The most basic model we consider includes stream power channel incision, uniform lithology, hillslope transport by linear diffusion, and surface‐water discharge proportional to drainage area. We systematically add one, two, or three elements of complexity to this model from one of four categories: hillslope processes, channel processes, surface hydrology, and representation of geologic materials. We apply methods of formal model analysis to the 37 alternative models. The global Method of Morris sensitivity analysis method is used to identify model input parameters that most and least strongly influence model outputs. Only a few parameters are identified as important, and this finding is consistent across two alternative model outputs: one based on a collection of topographic metrics and one that uses an objective function based on a topographic difference. Parameters that control channel erosion are consistently important, while hillslope diffusivity is important for only select model outputs. Uncertainty in initial and boundary conditions is associated with low sensitivity. Sensitivity analysis provides insight to model dynamics and is a critical step in using model analysis for mechanistic hypothesis testing in landscape evolution theory.more » « less
- 
            Recent advances in high-resolution imaging techniques and particle-based simulation methods have enabled the precise microscopic characterization of collective dynamics in various biological and engineered active matter systems. In parallel, data-driven algorithms for learning interpretable continuum models have shown promising potential for the recovery of underlying partial differential equations (PDEs) from continuum simulation data. By contrast, learning macroscopic hydrodynamic equations for active matter directly from experiments or particle simulations remains a major challenge, especially when continuum models are not known a priori or analytic coarse graining fails, as often is the case for nondilute and heterogeneous systems. Here, we present a framework that leverages spectral basis representations and sparse regression algorithms to discover PDE models from microscopic simulation and experimental data, while incorporating the relevant physical symmetries. We illustrate the practical potential through a range of applications, from a chiral active particle model mimicking nonidentical swimming cells to recent microroller experiments and schooling fish. In all these cases, our scheme learns hydrodynamic equations that reproduce the self-organized collective dynamics observed in the simulations and experiments. This inference framework makes it possible to measure a large number of hydrodynamic parameters in parallel and directly from video data.more » « less
- 
            Unpaired data training enables super-resolution confocal microscopy from low-resolution acquisitionsSupervised deep-learning models have enabled super-resolution imaging in several microscopic imaging modalities, increasing the spatial lateral bandwidth of the original input images beyond the diffraction limit. Despite their success, their practical application poses several challenges in terms of the amount of training data and its quality, requiring the experimental acquisition of large, paired databases to generate an accurate generalized model whose performance remains invariant to unseen data. Cycle-consistent generative adversarial networks (cycleGANs) are unsupervised models for image-to-image translation tasks that are trained on unpaired datasets. This paper introduces a cycleGAN framework specifically designed to increase the lateral resolution limit in confocal microscopy by training a cycleGAN model using low- and high-resolution unpaired confocal images of human glioblastoma cells. Training and testing performances of the cycleGAN model have been assessed by measuring specific metrics such as background standard deviation, peak-to-noise ratio, and a customized frequency content measure. Our cycleGAN model has been evaluated in terms of image fidelity and resolution improvement using a paired dataset, showing superior performance than other reported methods. This work highlights the efficacy and promise of cycleGAN models in tackling super-resolution microscopic imaging without paired training, paving the path for turning home-built low-resolution microscopic systems into low-cost super-resolution instruments by means of unsupervised deep learning.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
