As coastal regions experience accelerating land loss, artificial substrates may be useful in restoration efforts to replenish sediment and facilitate plant colonization. Recycled glass sand is a potential artificial substrate for marsh building due to its sustainability, availability, and similarity to natural substrates. However, differences in texture and availability of microbiota necessitate investigating how it affects plant growth. We tested the effect of three substrates (conventionally used dredged river sand, recycled glass sand, and a mix) and inoculation with natural soil microbes on the biomass and root architecture of Black mangrove (Avicennia germinans) in a greenhouse experiment. We found neither substrate nor inoculum affected biomass; however, survival was lower in mixed substrate compared to dredged and glass sand, and live inoculum increased survival from 70 to 93%. Substrate affected root architecture: mangroves grown in glass sand had 55% lower fine root length, 51% lower specific root length (length/mass), and 26% larger average root diameter than mangroves grown in dredged sand. Although an unintended fungal infection byGeotrichum candidumkilled nearly 90% of infected propagules before the experiment, surviving plants had 81% higher biomass than uninfected plants. These findings suggest that while glass sand does not affect biomass, it may affect root architecture in ways that compromise soil stability. Furthermore, inoculation with live soil may boost restoration planting success across substrates, likely by reintroducing mutualists. Overall, recycled glass sand may be a viable restoration strategy with the caveat that the developing root architecture may differ from that in more natural substrates.
more »
« less
This content will become publicly available on December 1, 2026
Sediment stability is optimized by manipulating planting design during coastal marsh establishment
Communities are increasingly harnessing the coastal protection functions of marshes and other coastal ecosystems within built infrastructure, developing nature-based designs to stabilize coastlines. These “living shorelines” often include planting ecosystem-engineering plants, which have traits that attenuate waves and facilitate sediment accretion while limiting erosion. However, failure is common during plant establishment, requiring interdisciplinary approaches to inform planting designs that enhance short-term sediment stability. Here we combine hydrodynamic modelling with mesocosm experiments to assess different planting approaches for the marsh grass Spartina alterniflora. The model, parameterized with traits measured in the experiments, showed that random arrangement of plants outperformed regular arrangements, reducing areas of high flow velocities and increasing tortuosity, facilitating sediment stability. Furthermore, wide-diameter Spartina clumps with increased biomass reduced flow better than small-diameter clumps, even when the area occupied by the vegetation site-wide is identical. Our experiments revealed multiple factors that influence the diameter and biomass of Spartina clumps, including plant source, sediment characteristics, and spatial arrangement of propagules. While some sources performed better than others, their relative performance varied with time and environment, suggesting that practitioners plant multiple sources to ensure incorporating high-performers in variable and often unexamined planting environments. Furthermore, clumping propagules during planting best generated the large, dense clumps that facilitate sediment stability.
more »
« less
- Award ID(s):
- 1945685
- PAR ID:
- 10609211
- Publisher / Repository:
- Scientific Reports
- Date Published:
- Journal Name:
- Scientific Reports
- Volume:
- 15
- Issue:
- 1
- ISSN:
- 2045-2322
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Ecological restoration is emerging as an important strategy to improve the recovery of degraded lands and to combat habitat and biodiversity loss worldwide. One central unresolved question revolves around the optimal spatial design for outplanted propagules that maximizes restoration success. Essentially, two contrasting paradigms exist: the first aims to plant propagules in dispersed arrangements to minimize competitive interactions. In contrast, ecological theory and recent field experiments emphasize the importance of positive species interactions, suggesting instead clumped planting configurations. However, planting too many propagules too closely is likely to waste restoration resources as larger clumps have less edges and have relatively lower spread rates. Thus, given the constraint of limited restoration efforts, there should be an optimal planting distance that both is able to harness positive species interactions but at the same time maximizes spread in the treated area. To explore these ideas, here we propose a simple mathematical model that tests the influence of positive species interactions on the optimal design of restoration efforts. We model the growth and spatial spread of a population starting from different initial conditions that represent either clumped or dispersed configurations of planted habitat patches in bare substrate. We measure the spatio-temporal development of the population, its relative and absolute growth rates as well as the time-discounted population size and its dependence on the presence of an Allee effect. Finally, we assess whether clumped or dispersed configurations perform better in our models and qualitatively compare the simulation outcomes with a recent wetland restoration experiment in a coastal wetland. Our study shows that intermediate clumping is likely to maximize plant spread under medium and high stress conditions (high occurrence of positive interactions) while dispersed designs maximize growth under low stress conditions where competitive interactions dominate. These results highlight the value of mathematical modeling for optimizing the efficiency of restoration efforts and call for integration of this theory into practice.more » « less
-
Abstract Environmental flow releases are an effective tool to meet multiple management objectives, including maintaining river conveyance, restoring naturally functioning riparian plant communities, and controlling invasive species. In this context, predicting plant mortality during floods remains a key area of uncertainty for both river managers and ecologists, particularly with respect to how flood hydraulics and sediment dynamics interact with the plants’ own traits to influence their vulnerability to scour and burial.To understand these processes better, we conducted flume experiments to quantify different plant species’ vulnerability to flooding across a range of plant sizes, patch densities, and sediment condition (equilibrium transport versus sediment deficit), using sand‐bed rivers in the U.S. southwest as our reference system. We ran 10 experimental floods in a 0.6 m wide flume using live seedlings of cottonwood and tamarisk, which have contrasting morphologies.Sediment supply, plant morphology, and patch composition all had significant impacts on plant vulnerability during floods. Floods under sediment deficit conditions, which typically occur downstream of dams, resulted in bed degradation and a 35% greater risk of plant loss compared to equilibrium sediment conditions. Plants in sparse patches dislodged five times more frequently than in dense patches. Tamarisk plants and patches had greater frontal area, larger basal diameter, longer roots, and lower crown position compared to cottonwood across all seedling heights. These traits were associated with a 75% reduction in tamarisk seedlings’ vulnerability to scour compared to cottonwood.Synthesis and applications. Tamarisk's greater survivability helps to explain its vigorous establishment and persistence on regulated rivers where flood magnitudes have been reduced. Furthermore, its documented influence on hydraulics, sediment deposition, and scour patterns in flumes is amplified at larger scales in strongly altered river channels where it has broadly invaded. Efforts to remove riparian vegetation using flow releases to maintain open floodways and/or control the spread of non‐native species will need to consider the target plants’ size, density, and species‐specific traits, in addition to the balance of sediment transport capacity and supply in the river system.more » « less
-
Societal Impact StatementThe invasive speciesS. alternifloraandP. australisare fast growing coastal wetland plants sequestering large amounts of carbon in the soil and protect coastlines against erosion and storm surges. In this global analysis, we found thatSpartinaandPhragmitesincrease methane but not nitrous oxide emissions, withPhragmiteshaving a lesser effect. The impact of the invasive species on emissions differed greatly among different types of native plant groups, providing valuable information to managers and policymakers during coastal wetland planning and restoration efforts. Further, our estimated net emissions per wetland plant group facilitate regional and national blue carbon estimates. SummaryGlobally,Spartina alternifloraandPhragmites australisare among the most pervasive invasive plants in coastal wetland ecosystems. Both species sequester large amounts of atmospheric carbon dioxide (CO2) and biogenic carbon in soils but also support production and emission of methane (CH4). In this study, we investigated the magnitude of their net greenhouse gas (GHG) release from invaded and non‐invaded habitats.We conducted a meta‐analysis of GHG fluxes associated with these two species and related soil carbon content and plant biomass in invaded coastal wetlands.Our results show that both invasive species increase CH4fluxes compared to uninvaded coastal wetlands, but they do not significantly affect CO2and N2O fluxes. The magnitude of emissions fromSpartinaandPhragmitesdiffers among native habitats. GHG fluxes, soil carbon and plant biomass ofSpartina‐invaded habitats were highest compared to uninvaded mudflats and succulent forb‐dominated wetlands, while being lower compared to uninvaded mangroves (except for CH4).This meta‐analysis highlights the important role of individual plant traits as drivers of change by invasive species on plant‐mediated carbon cycles.more » « less
-
ABSTRACT Herbivore fronts can alter plant traits (chemical and/or morphological features) and performance via grazing. Yet, herbivore‐driven trait alterations are rarely considered when assessing how these fronts shape ecosystems, despite the critical role that plant performance plays in ecosystem functioning. We evaluated herbivore fronts created by the purple marsh crab,Sesarma reticulatum, as it consumes the cordgrass,Spartina alterniflora, in Virginian salt marshes.Sesarmafronts form at the head of tidal creeks and move inland, creating a denuded mudflat between the tall‐formSpartinalow marsh (trailing edge) and the short‐formSpartinahigh marsh (leading edge). We quantifiedSesarmafront migration rate, tested ifSesarmaherbivory altered geomorphic processes andSpartinatraits at the trailing and leading edges, and examined how these trait changes persisted through the final 8 weeks of the growing season.Sesarmafront migration in our region is two times slower than fronts in the Southeast United States, andSpartinaretreat rate at the leading edge is greater than the revegetation rate at the trailing edge.Sesarmafronts lowered elevation and decreased sediment shear strength at the trailing edge while having no impact on soil organic matter and bulk density at either edge. At the leading edge,Sesarmagrazing reducedSpartinagrowth traits and defensive ability, and trait changes persisted through the remaining growing season. At the trailing edge, however,Sesarmagrazing promoted belowground biomass production and had limited to no effect on growth or defensive traits. We show that herbivore fronts negatively impact saltmarsh plant traits at their leading edge, potentially contributing to front propagation. In contrast, plants at the trailing edge were more resistant to herbivore grazing and may enhance resilience through elevated belowground biomass production. Future work should consider herbivore‐driven plant trait alterations in the context of herbivore fronts to better predict ecosystem response and recovery.more » « less
An official website of the United States government
