Large Language Models (LLMs) are reshaping many aspects of materials science and chemistry research, enabling advances in molecular property prediction, materials design, scientific automation, knowledge extraction, and more. Recent developments demonstrate that the latest class of models are able to integrate structured and unstructured data, assist in hypothesis generation, and streamline research workflows. To explore the frontier of LLM capabilities across the research lifecycle, we review applications of LLMs through 34 total projects developed during the second annual Large Language Model Hackathon for Applications in Materials Science and Chemistry, a global hybrid event. These projects spanned seven key research areas: (1) molecular and material property prediction, (2) molecular and material design, (3) automation and novel interfaces, (4) scientific communication and education, (5) research data management and automation, (6) hypothesis generation and evaluation, and (7) knowledge extraction and reasoning from the scientific literature. Collectively, these applications illustrate how LLMs serve as versatile predictive models, platforms for rapid prototyping of domain-specific tools, and much more. In particular, improvements in both open source and proprietary LLM performance through the addition of reasoning, additional training data, and new techniques have expanded effectiveness, particularly in low-data environments and interdisciplinary research. As LLMs continue to improve, their integration into scientific workflows presents both new opportunities and new challenges, requiring ongoing exploration, continued refinement, and further research to address reliability, interpretability, and reproducibility.
more »
« less
This content will become publicly available on June 24, 2026
Rethinking chemical research in the age of large language models
Large language models (LLMs) offer opportunities for advancing chemical research, including planning, optimization, data analysis, automation and knowledge management. Deploying LLMs in active environments, where they interact with tools and data, can greatly enhance their capabilities. However, challenges remain in evaluating their performance and addressing ethical issues such as reproducibility, data privacy and bias. Here we discuss ongoing and potential integrations of LLMs in chemical research, highlighting existing challenges to guide the effective use of LLMs as active scientific partners.
more »
« less
- Award ID(s):
- 2202693
- PAR ID:
- 10609221
- Publisher / Repository:
- Springer
- Date Published:
- Journal Name:
- Nature Computational Science
- ISSN:
- 2662-8457
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Large language models (LLMs) are reshaping many aspects of materials science and chemistry research, enabling advances in molecular property prediction, materials design, scientific automation, knowledge extraction, and more. Recent developments demonstrate that the latest class of models are able to integrate structured and unstructured data, assist in hypothesis generation, and streamline research workflows. To explore the frontier of LLM capabilities across the research lifecycle, we review applications of LLMs through 32 total projects developed during the second annual LLM hackathon for applications in materials science and chemistry, a global hybrid event. These projects spanned seven key research areas: (1) molecular and material property prediction, (2) molecular and material design, (3) automation and novel interfaces, (4) scientific communication and education, (5) research data management and automation, (6) hypothesis generation and evaluation, and (7) knowledge extraction and reasoning from the scientific literature. Collectively, these applications illustrate how LLMs serve as versatile predictive models, platforms for rapid prototyping of domain-specific tools, and much more. In particular, improvements in both open source and proprietary LLM performance through the addition of reasoning, additional training data, and new techniques have expanded effectiveness, particularly in low-data environments and interdisciplinary research. As LLMs continue to improve, their integration into scientific workflows presents both new opportunities and new challenges, requiring ongoing exploration, continued refinement, and further research to address reliability, interpretability, and reproducibility.more » « less
-
Chemical reaction data has existed and still largely exists in unstructured forms. But curating such information into datasets suitable for tasks such as yield and reaction outcome prediction is impractical via manual curation and not possible to automate through programmatic means alone. Large language models (LLMs) have emerged as potent tools, showcasing remarkable capabilities in processing textual information and therefore could be extremely useful in automating this process. To address the challenge of unstructured data, we manually curated a dataset of structured chemical reaction data to fine-tune and evaluate LLMs. We propose a paradigm that leverages prompt-tuning, fine-tuning techniques, and a verifier to check the extracted information. We evaluate the capabilities of various LLMs, including LLAMA-2 and GPT models with different parameter counts, on the data extraction task. Our results show that prompt tuning of GPT-4 yields the best accuracy and evaluation results. Fine-tuning LLAMA-2 models with hundreds of samples does enable them and organize scientific material according to user-defined schemas better though. This workflow shows an adaptable approach for chemical reaction data extraction but also highlights the challenges associated with nuance in chemical information. We open-sourced our code at GitHub.more » « less
-
Hallucinations in large language models (LLMs), where they generate fluent but factually incorrect outputs, pose challenges for applications requiring strict truthfulness. This work proposes a multi-faceted approach to detect such hallucinations across various language tasks. We leverage automatic data annotation using a proprietary LLM, fine-tuning of the Mistral-7B-instruct-v0.2 model on annotated and benchmark data, role-based and rationale-based prompting strategies, and an ensemble method combining different model outputs through majority voting. This comprehensive framework aims to improve the robustness and reliability of hallucination detection for LLM generations. Code and data1 1 Introduction The modern natural language generation (NLG) (OpenAI et al., 2023; Touvron et al., 2023) landscape faces two interconnected challenges: firstly, current neural models have a tendency to produce f luent yet inaccurate outputs, and secondly, our evaluation metrics are better suited for assessing f luency rather than correctness(Bang et al., 2023; Guerreiro et al., 2023). This phenomenon, known as "hallucination," (Ji et al., 2023) where neural networks generate plausible-sounding but factually incorrect outputs, is a significant hurdle, especially for NLG applications that require strict adherence to correctness. For instance, in machine translation(Lee et al., 2019), producing a fluent translation that deviates from the source text’s meaning renders the entire translation pipeline unreliable. This issue may arise as LLMs are trained on vast amounts of data from the internet, which can contain inaccuracies, biases, and false information. Also, it may arise due improper representations learned during training even if good quality data is 1https://github.com/souvikdgp16/shroom_compos_mentis used. As a result, LLMs can sometimes hallucinate or fabricate details, especially when prompted to discuss topics outside their training data or make inferences beyond their capabilities. Hallucination detection (Liu et al., 2022), also known as factual verification or truthfulness evaluation, identifies and mitigates these hallucinations in the outputs of LLMs. This is an active area of research and development, as it is crucial for ensuring the reliability and trustworthiness of LLMgenerated content, particularly in high-stakes domains such as healthcare, finance, and legal applications. In this task, the primary focus will be to classify whether a generation is hallucinated. This work proposes a multi-faceted approach to detecting hallucinations in large language models.more » « less
-
Recently, remarkable progress has been made over large language models (LLMs), demonstrating their unprecedented capability in varieties of natural language tasks. However, completely training a large general-purpose model from the scratch is challenging for time series analysis, due to the large volumes and varieties of time series data, as well as the non-stationarity that leads to concept drift impeding continuous model adaptation and re-training. Recent advances have shown that pre-trained LLMs can be exploited to capture complex dependencies in time series data and facilitate various applications. In this survey, we provide a systematic overview of existing methods that leverage LLMs for time series analysis. Specifically, we first state the challenges and motivations of applying language models in the context of time series as well as brief preliminaries of LLMs. Next, we summarize the general pipeline for LLM-based time series analysis, categorize existing methods into different groups (\textit{i.e.}, direct query, tokenization, prompt design, fine-tune, and model integration), and highlight the key ideas within each group. We also discuss the applications of LLMs for both general and spatial-temporal time series data, tailored to specific domains. Finally, we thoroughly discuss future research opportunities to empower time series analysis with LLMs.more » « less
An official website of the United States government
