The weldability of plain and inoculated 6061 aluminum processed with gas metal arc directed energy deposition (GMA-DED) was evaluated and compared to wrought 6061. Autogenous gas tungsten arc welds of varying heat inputs were made, and the degree of solidification cracking was evaluated. The degree of cracking in the inoculated 6061 material was lower than that of plain GMA-DED and wrought 6061. Microstructure characterization revealed that the welds on the inoculated 6061 produced fine, equiaxed grains, whereas the plain 6061 showed coarse, columnar grains. A combination of heat transfer and solidification models were employed to predict the solidification morphology of the 6061 welds, which closely matched the experimental results in all cases. A model was developed to understand the effect of grain morphology on solidification cracking, and it was found that equiaxed grains shifted the critical liquid film range for cracking to lower solid fractions where thermal stresses are the lowest. However, cracking can be caused if sufficient external stresses are applied when the critical liquid film thickness is present during solidification of the equiaxed grain structure. This work provides insight into the role grain size and morphology control can have in suppressing solidification cracking of other aluminum alloys.
more »
« less
Creep Properties of Gas Metal Arc Directed Energy Deposition Austenitic Stainless Steel
Abstract Gas metal arc directed energy deposition (GMA-DED) has potential for the power generation industry to reduce both time and cost since larger and more complex part geometries can be constructed compared to the typical subtractive methods. The performance of GMA-DED builds can be influenced by the deposition method, resulting microstructure, and formation of defects or secondary phases in the final component. Previous work in the literature evaluated the mechanical properties of GMA-DED builds for a range of austenitic stainless steels, however there is limited data on the high temperature mechanical behavior. This work evaluated the high temperature creep properties of GMA-DED builds constructed with type 316H, 316L, 316LSi, and 16-8-2 stainless steels at 650 °C, 750 °C and 825 °C. The alloy with longest time to rupture for a given stress varied depending on test temperature. Creep damage accumulation at grain boundaries was observed along with grain boundary precipitates which likely aided in damage accumulation. Evaluating the creep properties with the Larson-Miller parameter showed the majority of results fell within the scatter band of creep performance for wrought 316 alloys, indicating the GMA-DED process may be suitable for use in advanced energy systems.
more »
« less
- Award ID(s):
- 2052819
- PAR ID:
- 10609345
- Publisher / Repository:
- American Society of Mechanical Engineers
- Date Published:
- ISBN:
- 978-0-7918-8850-6
- Format(s):
- Medium: X
- Location:
- Bellevue, Washington, USA
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Additively manufactured stainless steels have become increasingly popular due to their desirable properties, but their mechanical behavior in structural parts is not yet fully understood. Specifically, the impact of columnar microstructures on fatigue behavior is still unclear. A typical directed energy deposition (DED)‐fabricated 316L stainless steel microstructure consists of distinct zones with equiaxed and columnar grains. To answer the question of how these zones of a DED‐fabricated 316L stainless steel microstructure affect the local mechanical behavior individually, such as the fatigue strength, stress/strain distribution, and fatigue life, crystal plasticity simulations are conducted to investigate the influence of microstructure on local mechanical behavior such as fatigue strength, stress/strain distribution, and fatigue life. The simulations find that columnar microstructures exhibit better fatigue strength than equiaxed structures when the load is parallel to the major axis of the columnar grains, but the strength decreases when the load is perpendicular. This study also uses machine learning to predict fatigue life, which shows good agreement with crystal plasticity modeling. The study suggests that the combined crystal plasticity–machine learning approach is an effective way to predict the fatigue behavior of additively manufactured components.more » « less
-
Balancing strength and ductility is crucial for structural materials, yet often presents a paradoxical challenge. This research focuses on crafting a unique bimetallic structure, combining non-magnetic, stainless steel 316L (SS316L) with limited strength but enhanced ductility and magnetic, martensitic 17-4 PH with higher strength but lower ductility. Utilizing a powder-based laser-directed energy deposition (L-DED) system, two vertical bimetallic configurations (SS316L/17-4 PH) and a radial bimetallic structure (SS316L core encased in 17-4 PH) were fabricated. Monolithic SS316L, 17-4 PH, and a 50% SS316L/50% 17-4 PH mixture were printed. The printed samples' phase, microstructure, room temperature mechanical properties, and fracture morphology were examined in as-printed conditions. Bimetallic samples exhibited both phases, with a smooth grain transition at the interface. Radial bimetallic samples demonstrated higher mechanical strength than other compositions, except 17-4 PH. These findings showcase the potential of the L-DED approach for creating functional components with tailored mechanical properties.more » « less
-
As the exigency for decarbonizing sectors such as utilities, heavy-duty transportation, and manufacturing has risen, interest in hydrogen technologies has intensified accordingly. Among the safety issues being addressed for hydrogen technologies is the potential for hydrogen embrittlement of steels, which are commonly specified for pressure boundaries in containment components. From an engineering perspective, hydrogen embrittlement of steels can be managed through conventional design and fitness-for-service (FFS) practices provided the mechanical property inputs are measured appropriately, i.e., testing of steels is performed in the hydrogen environment. Given the increasing need for managing hydrogen embrittlement to safely operate high-pressure containment components, the purpose of this review is to comprehensively survey and critically assess the literature on the following mechanical properties of steels in gaseous hydrogen that serve as inputs to design and FFS analyses: threshold stress-intensity factor or threshold J-integral for subcritical, time-dependent cracking, fatigue crack growth rate, and total fatigue life. The review focuses on such mechanical properties in gaseous hydrogen for carbon-manganese (C-Mn) steels, low-alloy steels, austenitic stainless steels, duplex stainless steels, as well as the ferritic and martensitic stainless steels, since these are most pertinent to containment components in hydrogen technology. Three high-level conclusions from the review are the following: 1) mechanical property data for C-Mn and low-alloy steels in hydrogen gas are sufficiently mature so that conservative limits can be specified for design and FFS analyses, 2) mechanical property data for austenitic stainless steels must be supplemented with additional measurements, particularly from specimens tested in high-pressure hydrogen gas, before conservative limits can be defined for design and FFS analyses, and 3) mechanical property data for ferritic, martensitic, and duplex stainless steels in hydrogen gas are so scarce that design and FFS analyses covering wide ranges of steel grades and component service conditions are currently not feasible.more » « less
-
Defining heat treatments for compositionally functionally graded materials (FGMs) is challenging due to varying processing conditions in terminal alloys and gradient regions. In the present work, we studied the impact of heat treatments on phase transformations and the resulting mechanical properties along an FGM grading from stainless steel 304L (SS304L) to Inconel 625 (IN625) FGM fabricated using directed energy deposition (DED) additive manufacturing (AM). We applied heat treatments at 700 °C, 900 °C, and 1150 °C and the microstructure and hardness, as a function of layer-wise composition and applied heat treatment, were characterized. The applicability of computational methods previously developed by the team to predict experimentally observed phases by the hybrid Scheil-equilibrium approach was evaluated. This approach improves the accuracy of predicting phases formed after heat treatment compared to equilibrium thermodynamic calculations using the overall layer compositions and provides a simple pathway to assist in designing heat treatment for FGMs.more » « less
An official website of the United States government

