skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Life Prediction for Directed Energy Deposition‐Manufactured 316L Stainless Steel using a Coupled Crystal Plasticity–Machine Learning Framework
Additively manufactured stainless steels have become increasingly popular due to their desirable properties, but their mechanical behavior in structural parts is not yet fully understood. Specifically, the impact of columnar microstructures on fatigue behavior is still unclear. A typical directed energy deposition (DED)‐fabricated 316L stainless steel microstructure consists of distinct zones with equiaxed and columnar grains. To answer the question of how these zones of a DED‐fabricated 316L stainless steel microstructure affect the local mechanical behavior individually, such as the fatigue strength, stress/strain distribution, and fatigue life, crystal plasticity simulations are conducted to investigate the influence of microstructure on local mechanical behavior such as fatigue strength, stress/strain distribution, and fatigue life. The simulations find that columnar microstructures exhibit better fatigue strength than equiaxed structures when the load is parallel to the major axis of the columnar grains, but the strength decreases when the load is perpendicular. This study also uses machine learning to predict fatigue life, which shows good agreement with crystal plasticity modeling. The study suggests that the combined crystal plasticity–machine learning approach is an effective way to predict the fatigue behavior of additively manufactured components.  more » « less
Award ID(s):
2152369
PAR ID:
10402225
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Engineering Materials
Volume:
25
Issue:
10
ISSN:
1438-1656
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract This work studies the use of laser shock peening (LSP) to improve back stress in additively manufactured (AM) 316L parts. Unusual hardening behavior in AM metal due to tortuous microstructure and strong texture poses additional design challenges. Anisotropic mechanical behavior complicates application for mechanical design because 3D printed parts will behave differently than traditionally manufactured parts under the same loading conditions. The prevalence of back-stress hardening or the Bauschinger effect causes reduced fatigue life under random loading and dissipates beneficial compressive residual stresses that prevent crack propagation. LSP is known to improve fatigue life by inducing compressive residual stress and has been applied with promising results to AM metal parts. It is here demonstrated that LSP may also be used as a tool for mitigating tensile back-stress hardening in AM parts, thereby reducing anisotropic hardening behavior and improving design use. It is also shown that the method of application of LSP to additively manufactured parts is key for achieving effective back-stress reduction. Back stress is extracted from additively manufactured dog bone samples built in both XY and XZ directions using hysteresis tensile. Both LSPed and as-built conditions are tested and compared, showing that LSPed samples exhibit a significant reduction to back stress when the laser processing is applied to the sample along the build direction. Electron backscatter diffraction (EBSD) performed under these conditions elucidates how grain morphologies and texture contribute to the observed improvement. Crystal plasticity finite element (CPFE) modeling develops insights as to the mechanisms by which this reduction is achieved in comparison with EBSD results. In particular, the difference in plastic behavior across build orientations of identified crystal planes and grain families are shown to impact the degree of LSP-induced back-stress reduction that is sustained through tensile loading. 
    more » « less
  2. This study investigates the mechanical behavior of additively manufactured (AM) 17-4 PH (AISI 630) stainless steels and compares their behavior to traditionally produced wrought counterparts. The goal of this study is to understand the key parameters influencing AM 17-4 PH steel fatigue life under ULCF conditions and to develop simple predictive models for fatigue-life estimation in AM 17-4 steel components. In this study, both AM and traditionally produced (wrought) material samples are fatigue tested under fully reversed (R = −1) strain controlled (2–4% strain) loading and characterized using micro-hardness, x-ray diffraction, and fractography methods. Results indicate decreased fatigue life for AM specimens as compared to wrought 17-4 PH specimens due to fabrication porosity and un-melted particle defect regions which provide a mechanism for internal fracture initiation. Heat treatment processes performed in this work, to both the AM and wrought specimens, had no observable effect on ULCF behavior. Result comparisons with an existing fatigue prediction model (the Coffin–Manson universal slopes equation) demonstrated consistent over-prediction of fatigue life at applied strain amplitudes greater than 3%, likely due to inherent AM fabrication defects. An alternative empirical ULCF capacity equation is proposed herein to aid future fatigue estimations in AM 17-4 PH stainless steel components. 
    more » « less
  3. Abstract This study demonstrates the simultaneous achievement of high strength and excellent corrosion resistance in a Ni-free, high N austenitic stainless steel fabricated by laser powder bed fusion (PBF-LB). The formation of a single-phase austenitic structure was confirmed through X-ray diffraction analysis, scanning electron microscopy and energy-dispersive X-ray spectroscopy. Cyclic potentiodynamic polarization tests conducted in 0.6 M NaCl solution at room temperature revealed high breakdown potential (1187 ± 31 mVSCE), indicating excellent corrosion resistance for the additively manufactured Ni-free austenitic stainless steel compared to wrought 316L stainless steel. These findings were further supported by immersion tests in FeCl3solution. The additively fabricated alloy’s yield strength and ultimate tensile strength exceeded 800 MPa and 1 GPa, respectively. The results highlight the potential for developing highly corrosion-resistant, high-strength Ni-free austenitic stainless steel by PBF-LB for possible applications for biomedical implants and structures relating to nuclear energy. 
    more » « less
  4. Balancing strength and ductility is crucial for structural materials, yet often presents a paradoxical challenge. This research focuses on crafting a unique bimetallic structure, combining non-magnetic, stainless steel 316L (SS316L) with limited strength but enhanced ductility and magnetic, martensitic 17-4 PH with higher strength but lower ductility. Utilizing a powder-based laser-directed energy deposition (L-DED) system, two vertical bimetallic configurations (SS316L/17-4 PH) and a radial bimetallic structure (SS316L core encased in 17-4 PH) were fabricated. Monolithic SS316L, 17-4 PH, and a 50% SS316L/50% 17-4 PH mixture were printed. The printed samples' phase, microstructure, room temperature mechanical properties, and fracture morphology were examined in as-printed conditions. Bimetallic samples exhibited both phases, with a smooth grain transition at the interface. Radial bimetallic samples demonstrated higher mechanical strength than other compositions, except 17-4 PH. These findings showcase the potential of the L-DED approach for creating functional components with tailored mechanical properties. 
    more » « less
  5. Abstract Wire arc additive manufacturing (WAAM) is an efficient technique for producing medium to large‐size components, due to its accessibility and sustainability in fabricating large‐scale parts with high deposition rates, employing low‐cost and simple equipment, and achieving high material efficiency. Consequently, WAAM has garnered attention across various industrial sectors and experienced significant growth, particularly over the last decade, as it addresses and mitigates challenges within production markets. One of the primary limitations of WAAM is its thermal history during the process, which directly influences grain formation and microstructure heterogeneity in the resulting part. Understanding the thermal cycle of the WAAM process is thus crucial for process improvement. Typically, fabricating a part using WAAM results in a microstructure with three distinct zones along the build direction: an upper zone (thin surface layer) with fine grains, a middle zone dominated by undesirably long and large columnar grains covering more than 90% of the produced part, and a lower zone with smaller to intermediate columnar grains closer to the substrate material. These zones arise from variations in cooling rates, with the middle zone exhibiting the lowest cooling rate due to 2D conduction heat transfer. Consequently, producing a component with a microstructure comprising three different zones, with a high fraction of large and long columnar grains, significantly impacts the final mechanical properties. Therefore, controlling the size and formation of these grain zones plays a key role in improving WAAM. The aim of this work is to investigate the formation of undesired columnar grains in austenitic stainless steel 316L during WAAM and propose a simple hybrid technique by combining WAAM with a hot forging process (with or without interlayer cooling time). This approach targets the disruption of the solidification pattern of columnar grain growth during deposition progression and aims to enhance the microstructure of WAAM components. 
    more » « less