Additively manufactured stainless steels have become increasingly popular due to their desirable properties, but their mechanical behavior in structural parts is not yet fully understood. Specifically, the impact of columnar microstructures on fatigue behavior is still unclear. A typical directed energy deposition (DED)‐fabricated 316L stainless steel microstructure consists of distinct zones with equiaxed and columnar grains. To answer the question of how these zones of a DED‐fabricated 316L stainless steel microstructure affect the local mechanical behavior individually, such as the fatigue strength, stress/strain distribution, and fatigue life, crystal plasticity simulations are conducted to investigate the influence of microstructure on local mechanical behavior such as fatigue strength, stress/strain distribution, and fatigue life. The simulations find that columnar microstructures exhibit better fatigue strength than equiaxed structures when the load is parallel to the major axis of the columnar grains, but the strength decreases when the load is perpendicular. This study also uses machine learning to predict fatigue life, which shows good agreement with crystal plasticity modeling. The study suggests that the combined crystal plasticity–machine learning approach is an effective way to predict the fatigue behavior of additively manufactured components.
- Award ID(s):
- 2152369
- NSF-PAR ID:
- 10402225
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Engineering Materials
- Volume:
- 25
- Issue:
- 10
- ISSN:
- 1438-1656
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract This work studies the use of laser shock peening (LSP) to improve back stress in additively manufactured (AM) 316L parts. Unusual hardening behavior in AM metal due to tortuous microstructure and strong texture poses additional design challenges. Anisotropic mechanical behavior complicates application for mechanical design because 3D printed parts will behave differently than traditionally manufactured parts under the same loading conditions. The prevalence of back-stress hardening or the Bauschinger effect causes reduced fatigue life under random loading and dissipates beneficial compressive residual stresses that prevent crack propagation. LSP is known to improve fatigue life by inducing compressive residual stress and has been applied with promising results to AM metal parts. It is here demonstrated that LSP may also be used as a tool for mitigating tensile back-stress hardening in AM parts, thereby reducing anisotropic hardening behavior and improving design use. It is also shown that the method of application of LSP to additively manufactured parts is key for achieving effective back-stress reduction. Back stress is extracted from additively manufactured dog bone samples built in both XY and XZ directions using hysteresis tensile. Both LSPed and as-built conditions are tested and compared, showing that LSPed samples exhibit a significant reduction to back stress when the laser processing is applied to the sample along the build direction. Electron backscatter diffraction (EBSD) performed under these conditions elucidates how grain morphologies and texture contribute to the observed improvement. Crystal plasticity finite element (CPFE) modeling develops insights as to the mechanisms by which this reduction is achieved in comparison with EBSD results. In particular, the difference in plastic behavior across build orientations of identified crystal planes and grain families are shown to impact the degree of LSP-induced back-stress reduction that is sustained through tensile loading.more » « less
-
This study investigates the mechanical behavior of additively manufactured (AM) 17-4 PH (AISI 630) stainless steels and compares their behavior to traditionally produced wrought counterparts. The goal of this study is to understand the key parameters influencing AM 17-4 PH steel fatigue life under ULCF conditions and to develop simple predictive models for fatigue-life estimation in AM 17-4 steel components. In this study, both AM and traditionally produced (wrought) material samples are fatigue tested under fully reversed (R = −1) strain controlled (2–4% strain) loading and characterized using micro-hardness, x-ray diffraction, and fractography methods. Results indicate decreased fatigue life for AM specimens as compared to wrought 17-4 PH specimens due to fabrication porosity and un-melted particle defect regions which provide a mechanism for internal fracture initiation. Heat treatment processes performed in this work, to both the AM and wrought specimens, had no observable effect on ULCF behavior. Result comparisons with an existing fatigue prediction model (the Coffin–Manson universal slopes equation) demonstrated consistent over-prediction of fatigue life at applied strain amplitudes greater than 3%, likely due to inherent AM fabrication defects. An alternative empirical ULCF capacity equation is proposed herein to aid future fatigue estimations in AM 17-4 PH stainless steel components.more » « less
-
Balancing strength and ductility is crucial for structural materials, yet often presents a paradoxical challenge. This research focuses on crafting a unique bimetallic structure, combining non-magnetic, stainless steel 316L (SS316L) with limited strength but enhanced ductility and magnetic, martensitic 17-4 PH with higher strength but lower ductility. Utilizing a powder-based laser-directed energy deposition (L-DED) system, two vertical bimetallic configurations (SS316L/17-4 PH) and a radial bimetallic structure (SS316L core encased in 17-4 PH) were fabricated. Monolithic SS316L, 17-4 PH, and a 50% SS316L/50% 17-4 PH mixture were printed. The printed samples' phase, microstructure, room temperature mechanical properties, and fracture morphology were examined in as-printed conditions. Bimetallic samples exhibited both phases, with a smooth grain transition at the interface. Radial bimetallic samples demonstrated higher mechanical strength than other compositions, except 17-4 PH. These findings showcase the potential of the L-DED approach for creating functional components with tailored mechanical properties.more » « less
-
Abstract Austenitic stainless steels are used in power generation components subjected to elevated temperatures over long service lives. Replacing these components can involve lengthy lead times and deteriorate the robustness of the energy infrastructure. Wire arc directed energy deposition (WA-DED) has the potential to enable rapid manufacturing of replacement parts, but the long-term stability of microstructures and mechanical properties produced by WA-DED is not well understood. In this work, we explore the influence of aging at 650°C for 1000 h on the formation of embrittling phases, such as sigma (σ), in the commercially available austenitic stainless steel wire feedstocks 316L, 316LSi, 316H and 16-8-2. All WA-DED samples formed secondary phases at grain boundaries (likely σ, possibly other phases as well), but these phases caused negligible changes in tensile properties in 316L, 316LSi and 316H. Samples of 16-8-2 formed significant amounts of ferrite and/or martensite after aging, which increased tensile strength but reduced ductility when tested at room temperature. This work demonstrates the need to design feedstock compositions that are stable with respect to ferrite and/or martensite formation, in addition to phases typically associated with embrittlement, to ensure microstructure and mechanical property stability for high-temperature applications with long service lives.
-
Abstract The feasibility of using argon‐atomized QT 17‐4+ stainless steel powder for directed energy deposition (DED) additive manufacturing is studied. The QT 17‐4+ steel is a novel martensitic steel designed based on the compositional modification of the standard 17‐4 precipitation‐hardened (PH) stainless steel. This modification aims to achieve better mechanical properties of as‐deposited components compared to the heat‐treated wrought 17‐4PH steel. In this study, QT 17‐4+ steel powder is used for DED, for the first time. The influence of laser power, laser scan speed, powder feed rate, and hatch overlap on the density is studied. The central composite design is used to determine the experimental matrix of these factors. The response surface methodology is used to obtain the empirical statistical prediction model. Both columnar and equiaxed parent austenite grain structures are observed. X‐ray diffraction analyses reveal a decrease in the percentage of retained austenite from 19% in the powder to 5% after DED. The microhardness of the DED processed sample in the as‐deposited state is slightly higher than that of wrought 17‐4PH steel either solution‐annealed or H900‐aged. A higher 0.2% yield strength, a lower ultimate tensile strength, and lower elongation are observed for the vertically printed test sample, when compared to the horizontal one.