PURPOSE: Identify Oropharyngeal cancer (OPC) patients at high-risk of developing long-term severe radiation-associated symptoms using dose volume histograms for organs-at-risk, via unsupervised clustering. MATERIAL AND METHODS: All patients were treated using radiation therapy for OPC. Dose-volume histograms of organs-at-risk were extracted from patients’ treatment plans. Symptom ratings were collected via the MD Anderson Symptom Inventory (MDASI) given weekly during, and 6 months post-treatment. Drymouth, trouble swallowing, mucus, and vocal dysfunction were selected for analysis in this study. Patient stratifications were obtained by applying Bayesian Mixture Models with three components to patient’s dose histograms for relevant organs. The clusters with the highest total mean doses were translated into dose thresholds using rule mining. Patient stratifications were compared against Tumor staging information using multivariate likelihood ratio tests. Model performance for prediction of moderate/severe symptoms at 6 months was compared against normal tissue complication probability (NTCP) models using cross-validation. RESULTS: A total of 349 patients were included for long-term symptom prediction. High-risk clusters were significantly correlated with outcomes for severe late drymouth (p <.0001, OR = 2.94), swallow (p = .002, OR = 5.13), mucus (p = .001, OR = 3.18), and voice (p = .009, OR = 8.99). Simplified clusters were also correlated with late severe symptoms for drymouth (p <.001, OR = 2.77), swallow (p = .01, OR = 3.63), mucus (p = .01, OR = 2.37), and voice (p <.001, OR = 19.75). Proposed cluster stratifications show better performance than NTCP models for severe drymouth (AUC.598 vs.559, MCC.143 vs.062), swallow (AUC.631 vs.561, MCC.20 vs -.030), mucus (AUC.596 vs.492, MCC.164 vs -.041), and voice (AUC.681 vs.555, MCC.181 vs -.019). Simplified dose thresholds also show better performance than baseline models for predicting late severe ratings for all symptoms. CONCLUSION: Our results show that leveraging the 3-D dose histograms from radiation therapy plan improves stratification of patients according to their risk of experiencing long-term severe radiation associated symptoms, beyond existing NTPC models. Our rule-based method can approximate our stratifications with minimal loss of accuracy and can proactively identify risk factors for radiation-associated toxicity. 
                        more » 
                        « less   
                    
                            
                            Airway obstruction secondary to vocal cord polyp
                        
                    
    
            ABSTRACT Patients with vocal cord polyps commonly present with symptoms of hoarseness. Although rare, large polyps can cause shortness of breath and stridor and should be included in the differential for patients with airway obstruction. Dysphonia or hoarseness can be a symptom of underlying disease, such as head and neck cancer. This case illustrates the importance of prompt and accurate diagnosis in a patient with persistent symptoms and a history of smoking. Obtaining a laryngoscopy is crucial to appropriately evaluate the larynx. Proper visualization of the laryngeal structures will help direct patient care toward further diagnostic imaging and medical or surgical intervention if indicated. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2152254
- PAR ID:
- 10609479
- Publisher / Repository:
- PubMed
- Date Published:
- Journal Name:
- JAAPA
- Volume:
- 37
- Issue:
- 10
- ISSN:
- 1547-1896
- Page Range / eLocation ID:
- 1 to 3
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Patient-Reported Outcomes (PRO) are collected directly from the patients using symptom questionnaires. In the case of head and neck cancer patients, PRO surveys are recorded every week during treatment with each patient’s visit to the clinic and at different follow-up times after the treatment has concluded. PRO surveys can be very informative regarding the patient’s status and the effect of treatment on the patient’s quality of life (QoL). Processing PRO data is challenging for several reasons. First, missing data is frequent as patients might skip a question or a questionnaire altogether. Second, PROs are patient-dependent, a rating of 5 for one patient might be a rating of 10 for another patient. Finally, most patients experience severe symptoms during treatment which usually subside over time. However, for some patients, late toxicities persist negatively affecting the patient’s QoL. These long-term severe symptoms are hard to predict and are the focus of this study. In this work, we model PRO data collected from head and neck cancer patients treated at the MD Anderson Cancer Center using the MD Anderson Symptom Inventory (MDASI) questionnaire as time series. We impute missing values with a combination of K nearest neighbor (KNN) and Long Short-Term Memory (LSTM) neural networks, and finally, apply LSTM to predict late symptom severity 12 months after treatment. We compare performance against clinical and ARIMA models. We show that the LSTM model combined with KNN imputation is effective in predicting late-stage symptom ratings for occurrence and severity under the AUC and F1 score metrics.more » « less
- 
            The growing amount of longitudinal data for a large population of patients has necessitated the application of algorithms that can discover patterns that inform patient management. This study demonstrates how temporal patterns generated from a combination of clinical and imaging measurements improve residual survival prediction in glioblastoma patients. Temporal patterns were identified with sequential pattern mining using data from 304 patients. Along with patient covariates, the patterns were incorporated as features in logistic regression models to predict 2-, 6-, or 9-month residual survival at each visit. The modeling approach that included temporal patterns achieved test performances of 0.820, 0.785, and 0.783 area under the receiver operating characteristic curve for predicting 2-, 6-, and 9-month residual survival, respectively. This approach significantly outperformed models that used tumor volume alone (p < 0.001) or tumor volume combined with patient covariates (p < 0.001) in training. Temporal patterns involving an increase in tumor volume above 122 mm3/day, a decrease in KPS across multiple visits, moderate neurologic symptoms, and worsening overall neurologic function suggested lower residual survival. These patterns are readily interpretable and found to be consistent with known prognostic indicators, suggesting they can provide early indicators to clinicians of changes in patient state that inform management decisions.more » « less
- 
            Introduction: Increased use of telemedicine could potentially streamline influenza diagnosis and reduce transmission. However, telemedicine diagnoses are dependent on accurate symptom reporting by patients. If patients disagree with clinicians on symptoms, previously derived diagnostic rules may be inaccurate. Methods: We performed a secondary data analysis of a prospective, nonrandomized cohort study at a university student health center. Patients who reported an upper respiratory complaint were required to report symptoms, and their clinician was required to report the same list of symptoms. We examined the performance of 5 previously developed clinical decision rules (CDRs) for influenza on both symptom reports. These predictions were compared against PCR diagnoses. We analyzed the agreement between symptom reports, and we built new predictive models using both sets of data. Results: CDR performance was always lower for the patient-reported symptom data, compared with clinician-reported symptom data. CDRs often resulted in different predictions for the same individual, driven by disagreement in symptom reporting. We were able to fit new models to the patient-reported data, which performed slightly worse than previously derived CDRs. These models and models built on clinician-reported data both suffered from calibration issues. Discussion: Patients and clinicians frequently disagree about symptom presence, which leads to reduced accuracy when CDRs built with clinician data are applied to patient-reported symptoms. Predictive models using patient-reported symptom data performed worse than models using clinicianreported data and prior results in the literature. However, the differences are minor, and developing new models with more data may be possible. ( J Am Board Fam Med 2023;00:000–000.)more » « less
- 
            Abstract Sickle cell disease (SCD) is the most prevalent inherited blood disorder in the world. But the clinical manifestations of the disease are highly variable. In particular, it is currently difficult to predict the adverse outcomes within patients with SCD, such as, vasculopathy, thrombosis, and stroke. Therefore, for most effective and timely interventions, a predictive analytic strategy is desirable. In this study, we evaluate the endothelial and prothrombotic characteristics of blood outgrowth endothelial cells (BOECs) generated from blood samples of SCD patients with known differences in clinical severity of the disease. We present a method to evaluate patient‐specific vaso‐occlusive risk by combining novel RNA‐seq and organ‐on‐chip approaches. Through differential gene expression (DGE) and pathway analysis we find that BOECs from SCD patients exhibit an activated state through cell adhesion molecule (CAM) and cytokine signaling pathways among many others. In agreement with clinical symptoms of patients, DGE analyses reveal that patient with severe SCD had a greater extent of endothelial activation compared to patient with milder symptoms. This difference is confirmed by performing qRT‐PCR of endothelial adhesion markers like E‐selectin, P‐selectin, tissue factor, and Von Willebrand factor. Finally, the differential regulation of the proinflammatory phenotype is confirmed through platelet adhesion readouts in our BOEC vessel‐chip. Taken together, we hypothesize that these easily blood‐derived endothelial cells evaluated through RNA‐seq and organ‐on‐chips may serve as a biotechnique to predict vaso‐occlusive episodes in SCD patients and will ultimately allow better therapeutic interventions.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    