skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 3, 2026

Title: To Compress or Not To Compress: Energy Trade-Offs and Benefits of Lossy Compressed I/O
Award ID(s):
2311875 2104023
PAR ID:
10609567
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
IEEE
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
  2. null (Ed.)
  3. We investigate the performance of discrete (coded) modulations in the full-duplex compress-forward relay channel using multilevel coding. We numerically analyze the rates assigned to component binary codes of all levels. LDPC codes are used as the component binary codes to provide error protection. The compression at the relay is done via a nested scalar quantizer whose output is mapped to a codeword through LDPC codes. A compound Tanner graphical model and information-exchange algorithm are described for joint decoding of both messages sent from the source and relay. Simulation results show that the performance of the proposed system based on multilevel coding is better than that based on BICM, and is separated from the SNR threshold of the known CF achievable rate by two factors consisting approximately of the sum of the shaping gain (due to scalar quantization) and the separation of the LDPC code implementation from AWGN capacity. 
    more » « less