Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available June 8, 2026
-
Free, publicly-accessible full text available June 8, 2026
-
Free, publicly-accessible full text available June 3, 2026
-
Free, publicly-accessible full text available June 3, 2026
-
Free, publicly-accessible full text available June 3, 2026
-
Free, publicly-accessible full text available June 3, 2026
-
Free, publicly-accessible full text available June 3, 2026
-
Free, publicly-accessible full text available June 3, 2026
-
Many scientific applications opt for particles instead of meshes as their basic primitives to model complex systems composed of billions of discrete entities. Such applications span a diverse array of scientific domains, including molecular dynamics, cosmology, computational fluid dynamics, and geology. The scale of the particles in those scientific applications increases substantially thanks to the ever-increasing computational power in high-performance computing (HPC) platforms. However, the actual gains from such increases are often undercut by obstacles in data management systems related to data storage, transfer, and processing. Lossy compression has been widely recognized as a promising solution to enhance scientific data management systems regarding such challenges, although most existing compression solutions are tailored for Cartesian grids and thus have sub-optimal results on discrete particle data. In this paper, we introduce LCP, an innovative lossy compressor designed for particle datasets, offering superior compression quality and higher speed than existing compression solutions. Specifically, our contribution is threefold. (1) We propose LCP-S, an error-bound aware block-wise spatial compressor to efficiently reduce particle data size while satisfying the pre-defined error criteria. This approach is universally applicable to particle data across various domains, eliminating the need for reliance on specific application domain characteristics. (2) We develop LCP, a hybrid compression solution for multi-frame particle data, featuring dynamic method selection and parameter optimization. It aims to maximize compression effectiveness while preserving data quality as much as possible by utilizing both spatial and temporal domains. (3) We evaluate our solution alongside eight state-of-the-art alternatives on eight real-world particle datasets from seven distinct domains. The results demonstrate that our solution achieves up to 104% improvement in compression ratios and up to 593% increase in speed compared to the second-best option, under the same error criteria.more » « lessFree, publicly-accessible full text available February 10, 2026
-
Free, publicly-accessible full text available February 1, 2026
An official website of the United States government
