skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on February 28, 2026

Title: Ab initio spin-mapping non-adiabatic dynamics simulations of photochemistry
We perform on-the-fly non-adiabatic molecular dynamics simulations using the recently developed spin-mapping formalism. Two quantum dynamics approaches based on this mapping formalism, (i) the fully linearized Spin-LSC and (ii) the partially linearized Spin-PLDM, are explored using the quasi-diabatic propagation scheme. We have performed dynamics simulations in four ab initio molecular models for which benchmark ab initio multiple spawning (AIMS) data have been published. We find that the spin-LSC and the previously reported symmetric quasi-classical (SQC) approaches provide nearly equivalent population dynamics. While we expected the more involved spin-PLDM method to provide superior accuracy compared to the other mapping-based approaches, SQC and spin-LSC, we found that it performed with equivalent accuracy compared to the AIMS benchmark results. We further explore the underpinnings of the spin-PLDM correlation function by decomposing its N2 density matrix-focused initial conditions, where N is the number of states in the quantum subsystem. Finally, we found an approximate form of the spin-PLDM correlation function, which simplifies the simulation and reduces the computational costs from N2 to N.  more » « less
Award ID(s):
2311442 2244683
PAR ID:
10609596
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
AIP Publishing
Date Published:
Journal Name:
The Journal of Chemical Physics
Volume:
162
Issue:
8
ISSN:
0021-9606
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We benchmark the accuracy of various trajectory-based non-adiabatic methods in simulating the polariton relaxation dynamics under the collective coupling regime. The Holstein–Tavis–Cummings Hamiltonian is used to describe the hybrid light–matter system of N molecules coupled to a single cavity mode. We apply various recently developed trajectory-based methods to simulate the population relaxation dynamics by initially exciting the upper polariton state and benchmark the results against populations computed from exact quantum dynamical propagation using the hierarchical equations of motion approach. In these benchmarks, we have systematically varied the number of molecules N, light–matter detunings, and the light–matter coupling strengths. Our results demonstrate that the symmetrical quasi-classical method with γ correction and spin-mapping linearized semi-classical approaches yield more accurate polariton population dynamics than traditional mixed quantum-classical methods, such as the Ehrenfest and surface hopping techniques. 
    more » « less
  2. We present the rigorous theoretical framework of the generalized spin mapping representation for non-adiabatic dynamics. Our work is based upon a new mapping formalism recently introduced by Runeson and Richardson [J. Chem. Phys. 152, 084110 (2020)], which uses the generators of the [Formula: see text] Lie algebra to represent N discrete electronic states, thus preserving the size of the original Hilbert space. Following this interesting idea, the Stratonovich–Weyl transform is used to map an operator in the Hilbert space to a continuous function on the SU( N) Lie group, i.e., a smooth manifold which is a phase space of continuous variables. We further use the Wigner representation to describe the nuclear degrees of freedom and derive an exact expression of the time-correlation function as well as the exact quantum Liouvillian for the non-adiabatic system. Making the linearization approximation, this exact Liouvillian is reduced to the Liouvillian of several recently proposed methods, and the performance of this linearized method is tested using non-adiabatic models. We envision that the theoretical work presented here provides a rigorous and unified framework to formally derive non-adiabatic quantum dynamics approaches with continuous variables and connects the previous methods in a clear and concise manner. 
    more » « less
  3. Accurate quantum dynamics simulations of nonadiabatic processes are important for studies of electron transfer, energy transfer, and photochemical reactions in complex systems. In this comparative study, we benchmark various approximate nonadiabatic dynamics methods with mapping variables against numerically exact calculations based on the tensor-train (TT) representation of high-dimensional arrays, including TT-KSL for zero-temperature dynamics and TT-thermofield dynamics for finite-temperature dynamics. The approximate nonadiabatic dynamics methods investigated include mixed quantum–classical Ehrenfest mean-field and fewest-switches surface hopping, linearized semiclassical mapping dynamics, symmetrized quasiclassical dynamics, the spin-mapping method, and extended classical mapping models. Different model systems were evaluated, including the spin-boson model for nonadiabatic dynamics in the condensed phase, the linear vibronic coupling model for electronic transition through conical intersections, the photoisomerization model of retinal, and Tully’s one-dimensional scattering models. Our calculations show that the optimal choice of approximate dynamical method is system-specific, and the accuracy is sensitively dependent on the zero-point-energy parameter and the initial sampling strategy for the mapping variables. 
    more » « less
  4. We generalize the quasi-diabatic (QD) propagation scheme to simulate the non-adiabatic polariton dynamics in molecule–cavity hybrid systems. The adiabatic-Fock states, which are the tensor product states of the adiabatic electronic states of the molecule and photon Fock states, are used as the locally well-defined diabatic states for the dynamics propagation. These locally well-defined diabatic states allow using any diabatic quantum dynamics methods for dynamics propagation, and the definition of these states will be updated at every nuclear time step. We use several recently developed non-adiabatic mapping approaches as the diabatic dynamics methods to simulate polariton quantum dynamics in a Shin–Metiu model coupled to an optical cavity. The results obtained from the mapping approaches provide very accurate population dynamics compared to the numerically exact method and outperform the widely used mixed quantum-classical approaches, such as the Ehrenfest dynamics and the fewest switches surface hopping approach. We envision that the generalized QD scheme developed in this work will provide a powerful tool to perform the non-adiabatic polariton simulations by allowing a direct interface between the diabatic dynamics methods and ab initio polariton information. 
    more » « less
  5. Abstract Atomistic modeling of chemically reactive systems has so far relied on either expensive ab initio methods or bond-order force fields requiring arduous parametrization. Here, we describe a Bayesian active learning framework for autonomous “on-the-fly” training of fast and accurate reactive many-body force fields during molecular dynamics simulations. At each time-step, predictive uncertainties of a sparse Gaussian process are evaluated to automatically determine whether additional ab initio training data are needed. We introduce a general method for mapping trained kernel models onto equivalent polynomial models whose prediction cost is much lower and independent of the training set size. As a demonstration, we perform direct two-phase simulations of heterogeneous H2turnover on the Pt(111) catalyst surface at chemical accuracy. The model trains itself in three days and performs at twice the speed of a ReaxFF model, while maintaining much higher fidelity to DFT and excellent agreement with experiment. 
    more » « less