skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: On the origin of the high star formation efficiency in massive galaxies at Cosmic Dawn
ABSTRACT Motivated by the early excess of bright galaxies seen by JWST, we run zoom-in cosmological simulations of a massive galaxy at Cosmic Dawn, in a halo of $$10^{11} {\rm M}_\odot$$ at $z = 9$, using the hydro-gravitational code ramses at an effective resolution $$\sim 10~{\rm pc}$$. We investigate physical mechanisms that enhance the star formation efficiencies (SFEs) at the high gas densities of the star-forming regions in this galaxy ($$\sim 3\times 10^3~{\rm cm^{-3}}$$, $$\sim 10^4~{\rm M}_\odot \,{\rm pc^{-2}}$$). Our fiducial star formation recipe uses a physically motivated, turbulence-based, multi-freefall model, avoiding ad hoc extrapolation from lower redshifts. By $z = 9$, our simulated galaxy is a clumpy, thick, rotating disc with a high stellar mass $$\sim 3\times 10^9~{\rm M}_\odot$$ and high star formation rate $$\sim 50~{\rm M}_\odot \,{\rm yr^{-1}}$$. The high gas density makes supernova (SN) feedback less efficient, producing a high local SFE $$\gtrsim 10~{{\ \rm per\ cent}}$$. The global SFE is set by feedback-driven outflows and only weakly correlated with the local SFE. Photoionization heating makes SN feedback more efficient, but the integrated SFE always remains high. Intense accretion at Cosmic Dawn seeds turbulence that reduces local SFE, but this only weakly affects the global SFE. The star formation histories of our simulated galaxies are similar to observed massive galaxies at Cosmic Dawn, despite our limited resolution. We set the stage for future simulations which treat radiation self-consistently and use a higher effective resolution $$\sim 1~{\rm pc}$$ that captures the physics of star-forming clouds.  more » « less
Award ID(s):
2406558 2150255
PAR ID:
10609741
Author(s) / Creator(s):
; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
540
Issue:
4
ISSN:
0035-8711
Format(s):
Medium: X Size: p. 3350-3383
Size(s):
p. 3350-3383
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Recent observations with JWST have uncovered unexpectedly high cosmic star formation activity in the early Universe, mere hundreds of millions of years after the big bang. These observations are often understood to reflect an evolutionary shift in star formation efficiency (SFE) caused by changing galactic conditions during these early epochs. We present FIREbox$$^{\it HR}$$, a high-resolution, cosmological hydrodynamical simulation from the Feedback in Realistic Environments (FIRE) project, which offers insights into the SFE of galaxies during the first billion years of cosmic time. FIREbox$$^{\it HR}$$ re-simulates the cosmic volume ($L=22.1$ cMpc) of the original FIREbox run with eight times higher mass resolution ($$m_{\rm b}\sim {}7800\, M_\odot$$), but with identical physics, down to $$z\sim {}6$$. FIREbox$$^{\it HR}$$ predicts ultraviolet (UV) luminosity functions in good agreement with available observational data. The simulation also successfully reproduces the observed cosmic UV luminosity density at $$z\sim {}6{\!-\!}14$$, demonstrating that relatively high star formation activity in the early Universe is a natural outcome of the baryonic processes encoded in the FIRE-2 model. According to FIREbox$$^{\it HR}$$, the SFE–halo mass relation for intermediate mass haloes ($$M_{\rm halo}\sim {}10^9{\!-\!}10^{11}\, {\rm M}_\odot$$) does not significantly evolve with redshift and is only weakly mass-dependent. These properties of the SFE–halo mass relation lead to a larger contribution from lower mass haloes at higher z, driving the gradual evolution of the observed cosmic UV luminosity density. A theoretical model based on the SFE–halo mass relation inferred from FIREbox$$^{\it HR}$$ allows us to explore implications for galaxy evolution. Future observations of UV faint galaxies at $$z\gt 12$$ will provide an opportunity to further test these predictions and deepen our understanding of star formation during Cosmic Dawn. 
    more » « less
  2. ABSTRACT We introduce a suite of cosmological volume simulations to study the evolution of galaxies as part of the Feedback in Realistic Environments project. FIREbox, the principal simulation of the present suite, provides a representative sample of galaxies (∼1000 galaxies with $$M_{\rm star}\gt 10^8\, M_\odot$$ at z  = 0) at a resolution ($$\Delta {}x\sim {}20\, {\rm pc}$$ , $$m_{\rm b}\sim {}6\times {}10^4\, M_\odot$$ ) comparable to state-of-the-art galaxy zoom-in simulations. FIREbox captures the multiphase nature of the interstellar medium in a fully cosmological setting (L = 22.1 Mpc) thanks to its exceptionally high dynamic range (≳106) and the inclusion of multichannel stellar feedback. Here, we focus on validating the simulation predictions by comparing to observational data. We find that star formation rates, gas masses, and metallicities of simulated galaxies with $$M_{\rm star}\lt 10^{10.5-11}\, M_\odot$$ broadly agree with observations. These galaxy scaling relations extend to low masses ($$M_{\rm star}\sim {}10^7\, M_\odot$$ ) and follow a (broken) power-law relationship. Also reproduced are the evolution of the cosmic HI density and the HI column density distribution at z ∼ 0–5. At low z , FIREbox predicts a peak in the stellar-mass–halo-mass relation but also a higher abundance of massive galaxies and a higher cosmic star formation rate density than observed, showing that stellar feedback alone is insufficient to reproduce the properties of massive galaxies at late times. Given its high resolution and sample size, FIREbox offers a baseline prediction of galaxy formation theory in a ΛCDM Universe while also highlighting modelling challenges to be addressed in next-generation galaxy simulations. 
    more » « less
  3. ABSTRACT We investigate the formation of dense stellar clumps in a suite of high-resolution cosmological zoom-in simulations of a massive, star-forming galaxy at z ∼ 2 under the presence of strong quasar winds. Our simulations include multiphase ISM physics from the Feedback In Realistic Environments (FIRE) project and a novel implementation of hyper-refined accretion disc winds. We show that powerful quasar winds can have a global negative impact on galaxy growth while in the strongest cases triggering the formation of an off-centre clump with stellar mass $${\rm M}_{\star }\sim 10^{7}\, {\rm M}_{\odot }$$, effective radius $${\rm R}_{\rm 1/2\, \rm Clump}\sim 20\, {\rm pc}$$, and surface density $$\Sigma _{\star } \sim 10^{4}\, {\rm M}_{\odot }\, {\rm pc}^{-2}$$. The clump progenitor gas cloud is originally not star-forming, but strong ram pressure gradients driven by the quasar winds (orders of magnitude stronger than experienced in the absence of winds) lead to rapid compression and subsequent conversion of gas into stars at densities much higher than the average density of star-forming gas. The AGN-triggered star-forming clump reaches $${\rm SFR} \sim 50\, {\rm M}_{\odot }\, {\rm yr}^{-1}$$ and $$\Sigma _{\rm SFR} \sim 10^{4}\, {\rm M}_{\odot }\, {\rm yr}^{-1}\, {\rm kpc}^{-2}$$, converting most of the progenitor gas cloud into stars in ∼2 Myr, significantly faster than its initial free-fall time and with stellar feedback unable to stop star formation. In contrast, the same gas cloud in the absence of quasar winds forms stars over a much longer period of time (∼35 Myr), at lower densities, and losing spatial coherency. The presence of young, ultra-dense, gravitationally bound stellar clumps in recently quenched galaxies could thus indicate local positive feedback acting alongside the strong negative impact of powerful quasar winds, providing a plausible formation scenario for globular clusters. 
    more » « less
  4. ABSTRACT We present and study a large suite of high-resolution cosmological zoom-in simulations, using the FIRE-2 treatment of mechanical and radiative feedback from massive stars, together with explicit treatment of magnetic fields, anisotropic conduction and viscosity (accounting for saturation and limitation by plasma instabilities at high β), and cosmic rays (CRs) injected in supernovae shocks (including anisotropic diffusion, streaming, adiabatic, hadronic and Coulomb losses). We survey systems from ultrafaint dwarf ($$M_{\ast }\sim 10^{4}\, \mathrm{M}_{\odot }$$, $$M_{\rm halo}\sim 10^{9}\, \mathrm{M}_{\odot }$$) through Milky Way/Local Group (MW/LG) masses, systematically vary uncertain CR parameters (e.g. the diffusion coefficient κ and streaming velocity), and study a broad ensemble of galaxy properties [masses, star formation (SF) histories, mass profiles, phase structure, morphologies, etc.]. We confirm previous conclusions that magnetic fields, conduction, and viscosity on resolved ($$\gtrsim 1\,$$ pc) scales have only small effects on bulk galaxy properties. CRs have relatively weak effects on all galaxy properties studied in dwarfs ($$M_{\ast } \ll 10^{10}\, \mathrm{M}_{\odot }$$, $$M_{\rm halo} \lesssim 10^{11}\, \mathrm{M}_{\odot }$$), or at high redshifts (z ≳ 1–2), for any physically reasonable parameters. However, at higher masses ($$M_{\rm halo} \gtrsim 10^{11}\, \mathrm{M}_{\odot }$$) and z ≲ 1–2, CRs can suppress SF and stellar masses by factors ∼2–4, given reasonable injection efficiencies and relatively high effective diffusion coefficients $$\kappa \gtrsim 3\times 10^{29}\, {\rm cm^{2}\, s^{-1}}$$. At lower κ, CRs take too long to escape dense star-forming gas and lose their energy to collisional hadronic losses, producing negligible effects on galaxies and violating empirical constraints from spallation and γ-ray emission. At much higher κ CRs escape too efficiently to have appreciable effects even in the CGM. But around $$\kappa \sim 3\times 10^{29}\, {\rm cm^{2}\, s^{-1}}$$, CRs escape the galaxy and build up a CR-pressure-dominated halo which maintains approximate virial equilibrium and supports relatively dense, cool (T ≪ 106 K) gas that would otherwise rain on to the galaxy. CR ‘heating’ (from collisional and streaming losses) is never dominant. 
    more » « less
  5. ABSTRACT The shape of the low-mass (faint) end of the galaxy stellar mass function (SMF) or ultraviolet luminosity function (UVLF) at $$z \gtrsim 6$$ is an open question for understanding which galaxies primarily drove cosmic reionization. Resolved photometry of Local Group low-mass galaxies allows us to reconstruct their star formation histories, stellar masses, and UV luminosities at early times, and this fossil record provides a powerful ‘near-far’ technique for studying the reionization-era SMF/UVLF, probing orders of magnitude lower in mass than direct HST/JWST observations. Using 882 low-mass ($$M_{\rm star}\lesssim 10^{9}\, \rm {M_\odot }$$) galaxies across 11 Milky Way (MW)- and Local Group-analogue environments from the FIRE-2 cosmological baryonic zoom-in simulations, we characterize their progenitors at $$z=6\!-\!9$$, the mergers/disruption of those progenitors over time, and how well their present-day fossil record traces the high-redshift SMF. A present-day galaxy with $$M_{\rm star}\sim 10^5\, \rm {M_\odot }$$ ($$\sim 10^9\, \rm {M_\odot }$$) had $$\approx 1$$ ($$\approx 30$$) progenitors at $$z\approx 7$$, and its main progenitor comprised $$\approx 100~{{\ \rm per\ cent}}$$ ($$\approx 10~{{\ \rm per\ cent}}$$) of the total stellar mass of all its progenitors at $$z\approx 7$$. We show that although only $$\sim 15~{{\ \rm per\ cent}}$$ of the early population of low-mass galaxies survives to present day, the fossil record of surviving Local Group galaxies accurately traces the low-mass slope of the SMF at $$z \sim 6 \!-\! 9$$. We find no obvious mass dependence to the mergers and accretion, and show that applying this reconstruction technique to just low-mass galaxies at $z = 0$ and not the MW/M31 hosts correctly recovers the slope of the SMF down to $$M_{\rm star} \sim 10^{4.5}\, \rm {{\rm M}_{\odot }}$$ at $$z \gtrsim 6$$. Thus, we validate the ‘near-far’ approach as an unbiased tool for probing low-mass reionization-era galaxies. 
    more » « less