skip to main content


Title: Elevated UV luminosity density at Cosmic Dawn explained by non-evolving, weakly mass-dependent star formation efficiency
ABSTRACT

Recent observations with JWST have uncovered unexpectedly high cosmic star formation activity in the early Universe, mere hundreds of millions of years after the big bang. These observations are often understood to reflect an evolutionary shift in star formation efficiency (SFE) caused by changing galactic conditions during these early epochs. We present FIREbox$^{\it HR}$, a high-resolution, cosmological hydrodynamical simulation from the Feedback in Realistic Environments (FIRE) project, which offers insights into the SFE of galaxies during the first billion years of cosmic time. FIREbox$^{\it HR}$ re-simulates the cosmic volume ($L=22.1$ cMpc) of the original FIREbox run with eight times higher mass resolution ($m_{\rm b}\sim {}7800\, M_\odot$), but with identical physics, down to $z\sim {}6$. FIREbox$^{\it HR}$ predicts ultraviolet (UV) luminosity functions in good agreement with available observational data. The simulation also successfully reproduces the observed cosmic UV luminosity density at $z\sim {}6{\!-\!}14$, demonstrating that relatively high star formation activity in the early Universe is a natural outcome of the baryonic processes encoded in the FIRE-2 model. According to FIREbox$^{\it HR}$, the SFE–halo mass relation for intermediate mass haloes ($M_{\rm halo}\sim {}10^9{\!-\!}10^{11}\, {\rm M}_\odot$) does not significantly evolve with redshift and is only weakly mass-dependent. These properties of the SFE–halo mass relation lead to a larger contribution from lower mass haloes at higher z, driving the gradual evolution of the observed cosmic UV luminosity density. A theoretical model based on the SFE–halo mass relation inferred from FIREbox$^{\it HR}$ allows us to explore implications for galaxy evolution. Future observations of UV faint galaxies at $z\gt 12$ will provide an opportunity to further test these predictions and deepen our understanding of star formation during Cosmic Dawn.

 
more » « less
Award ID(s):
2108314 2108962 1910346 1752913
PAR ID:
10559698
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
536
Issue:
1
ISSN:
0035-8711
Format(s):
Medium: X Size: p. 988-1016
Size(s):
p. 988-1016
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT We introduce a suite of cosmological volume simulations to study the evolution of galaxies as part of the Feedback in Realistic Environments project. FIREbox, the principal simulation of the present suite, provides a representative sample of galaxies (∼1000 galaxies with $M_{\rm star}\gt 10^8\, M_\odot$ at z  = 0) at a resolution ($\Delta {}x\sim {}20\, {\rm pc}$ , $m_{\rm b}\sim {}6\times {}10^4\, M_\odot$ ) comparable to state-of-the-art galaxy zoom-in simulations. FIREbox captures the multiphase nature of the interstellar medium in a fully cosmological setting (L = 22.1 Mpc) thanks to its exceptionally high dynamic range (≳106) and the inclusion of multichannel stellar feedback. Here, we focus on validating the simulation predictions by comparing to observational data. We find that star formation rates, gas masses, and metallicities of simulated galaxies with $M_{\rm star}\lt 10^{10.5-11}\, M_\odot$ broadly agree with observations. These galaxy scaling relations extend to low masses ($M_{\rm star}\sim {}10^7\, M_\odot$ ) and follow a (broken) power-law relationship. Also reproduced are the evolution of the cosmic HI density and the HI column density distribution at z ∼ 0–5. At low z , FIREbox predicts a peak in the stellar-mass–halo-mass relation but also a higher abundance of massive galaxies and a higher cosmic star formation rate density than observed, showing that stellar feedback alone is insufficient to reproduce the properties of massive galaxies at late times. Given its high resolution and sample size, FIREbox offers a baseline prediction of galaxy formation theory in a ΛCDM Universe while also highlighting modelling challenges to be addressed in next-generation galaxy simulations. 
    more » « less
  2. ABSTRACT

    The shape of the low-mass (faint) end of the galaxy stellar mass function (SMF) or ultraviolet luminosity function (UVLF) at $z \gtrsim 6$ is an open question for understanding which galaxies primarily drove cosmic reionization. Resolved photometry of Local Group low-mass galaxies allows us to reconstruct their star formation histories, stellar masses, and UV luminosities at early times, and this fossil record provides a powerful ‘near-far’ technique for studying the reionization-era SMF/UVLF, probing orders of magnitude lower in mass than direct HST/JWST observations. Using 882 low-mass ($M_{\rm star}\lesssim 10^{9}\, \rm {M_\odot }$) galaxies across 11 Milky Way (MW)- and Local Group-analogue environments from the FIRE-2 cosmological baryonic zoom-in simulations, we characterize their progenitors at $z=6\!-\!9$, the mergers/disruption of those progenitors over time, and how well their present-day fossil record traces the high-redshift SMF. A present-day galaxy with $M_{\rm star}\sim 10^5\, \rm {M_\odot }$ ($\sim 10^9\, \rm {M_\odot }$) had $\approx 1$ ($\approx 30$) progenitors at $z\approx 7$, and its main progenitor comprised $\approx 100~{{\ \rm per\ cent}}$ ($\approx 10~{{\ \rm per\ cent}}$) of the total stellar mass of all its progenitors at $z\approx 7$. We show that although only $\sim 15~{{\ \rm per\ cent}}$ of the early population of low-mass galaxies survives to present day, the fossil record of surviving Local Group galaxies accurately traces the low-mass slope of the SMF at $z \sim 6 \!-\! 9$. We find no obvious mass dependence to the mergers and accretion, and show that applying this reconstruction technique to just low-mass galaxies at $z = 0$ and not the MW/M31 hosts correctly recovers the slope of the SMF down to $M_{\rm star} \sim 10^{4.5}\, \rm {{\rm M}_{\odot }}$ at $z \gtrsim 6$. Thus, we validate the ‘near-far’ approach as an unbiased tool for probing low-mass reionization-era galaxies.

     
    more » « less
  3. ABSTRACT

    JWST has revealed a large population of UV-bright galaxies at $z\gtrsim 10$ and possibly overly massive galaxies at $z\gtrsim 7$, challenging standard galaxy formation models in the ΛCDM cosmology. We use an empirical galaxy formation model to explore the potential of alleviating these tensions through an Early Dark Energy (EDE) model, originally proposed to solve the Hubble tension. Our benchmark model demonstrates excellent agreement with the UV luminosity functions (UVLFs) at $4\lesssim z \lesssim 10$ in both ΛCDM and EDE cosmologies. In the EDE cosmology, the UVLF measurements at $z\simeq 12$ based on spectroscopically confirmed galaxies (eight galaxies at $z\simeq 11\!-\!13.5$) exhibit no tension with the benchmark model. Photometric constraints at $12 \lesssim z\lesssim 16$ can be fully explained within EDE via either moderately increased star-formation efficiencies ($\epsilon _{\ast}\sim 3\!-\!10\ \hbox{per cent}$ at $M_{\rm halo}\sim 10^{10.5}{\, \rm M_\odot }$) or enhanced UV variabilities ($\sigma _{\rm UV}\sim 0.8\!-\!1.3$ mag at $M_{\rm halo}\sim 10^{10.5}{\, \rm M_\odot }$) that are within the scatter of hydrodynamical simulation predictions. A similar agreement is difficult to achieve in $\Lambda$CDM, especially at $z\gtrsim 14$, where the required $\sigma _{\rm UV}$ exceeds the maximum value seen in simulations. Furthermore, the implausibly large cosmic stellar mass densities inferred from some JWST observations are no longer in tension with cosmology when the EDE is considered. Our findings highlight EDE as an intriguing unified solution to a fundamental problem in cosmology and the recent tensions raised by JWST observations. Data at the highest redshifts reached by JWST will be crucial for differentiating modified galaxy formation physics from new cosmological physics.

     
    more » « less
  4. ABSTRACT

    Atomic hydrogen (H i) serves a crucial role in connecting galactic-scale properties such as star formation with the large-scale structure of the Universe. While recent numerical simulations have successfully matched the observed covering fraction of H i near Lyman Break Galaxies (LBGs) and in the foreground of luminous quasars at redshifts $z \lesssim 3$, the low-mass end remains as-of-yet unexplored in observational and computational surveys. We employ a cosmological, hydrodynamical simulation (FIREbox) supplemented with zoom-in simulations (MassiveFIRE) from the Feedback In Realistic Environments (FIRE) project to investigate the H i covering fraction of Lyman Limit Systems ($N_{{\text{H}}\, \rm{{\small I}}} \gtrsim 10^{17.2}$ cm$^{-2}$) across a wide range of redshifts ($z=0-6$) and halo masses ($10^8-10^{13} \, \,\mathrm{ M}_{\odot }$ at $z=0$, $10^8-10^{11}\, \,\mathrm{ M}_{\odot }$ at $z=6$) in the absence of feedback from active galactic nuclei. We find that the covering fraction inside haloes exhibits a strong increase with redshift, with only a weak dependence on halo mass for higher mass haloes. For massive haloes ($M_{\mathrm{vir}} \sim 10^{11}-10^{12} \,\mathrm{ M}_{\odot }$), the radial profiles showcase scale-invariance and remain independent of mass. The radial dependence is well captured by a fitting function. The covering fractions in our simulations are in good agreement with measurements of the covering fraction in LBGs. Our comprehensive analysis unveils a complex dependence with redshift and halo mass for haloes with $M_{\mathrm{vir}} \lesssim 10^{10} \,\mathrm{ M}_{\odot }$ that future observations aim to constrain, providing key insights into the physics of structure formation and gas assembly.

     
    more » « less
  5. ABSTRACT

    Recent observations indicate that galactic outflows are ubiquitous in high-redshift (high-z) galaxies, including normal star-forming galaxies, quasar hosts, and dusty star-forming galaxies (DSFGs). However, the impact of outflows on the evolution of their hosts is still an open question. Here, we analyse the star-formation histories and galactic outflow properties of galaxies in massive haloes ($10^{12}\, {\rm M}_{\odot }\ \lt\ M_{\rm vir}\ \lt\ 5\times 10^{12}\, {\rm M}_{\odot }$) at z ≳ 5.5 in three zoom-in cosmological simulations from the MassiveFIRE suite, as part of the Feedback In Realistic Environments (FIRE) project. The simulations were run with the FIRE-2 model, which does not include feedback from active galactic nuclei. The simulated galaxies resemble z > 4 DSFGs, with star-formation rates of $\sim\!{1000}\ {\rm M}_{\odot }\, \rm yr^{-1}$ and molecular gas masses of Mmol ∼ 1010 M⊙. However, the simulated galaxies are characterized by higher circular velocities than those observed in high-z DSFGs. The mass loading factors from stellar feedback are of the order of ∼0.1, implying that stellar feedback is inefficient in driving galactic outflows and gas is consumed by star formation on much shorter time-scales than it is expelled from the interstellar medium. We also find that stellar feedback is highly inefficient in self-regulating star formation in this regime, with an average integrated star formation efficiency (SFE) per dynamical time of 30 per cent. Finally, compared with FIRE-2 galaxies hosted in similarly massive haloes at lower redshift, we find lower mass loading factors and higher SFEs in the high-z sample. We argue that both effects originate from the higher total and gas surface densities that characterize high-z massive systems.

     
    more » « less